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Abstract

This brief paper is a review of the classical Lyapunov theory, also referred to as Lyapunov’s
direct method or Lyapunov’s second method. The Lyapunov theory uses the concept of
Lyapunov function of the system to draw conclusions on system stability, without actually solving
the differential equation of the system motion. Some primary definitions are recalled and
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uniqueness solution issue for the Lyapunov equation is addressed for linear systems.
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1. Introduction

In Control theory, stability is the basic requirement for prior
to any attempt to make use of any system. One method of
investigating stability, widely used, is the Lyapunov theory
introduced by Alexandr Mikhailovich Lyapunov (1892). In
his approach, the energy function of the system, or any other
similar function (later on named after him: a Lyapunov
function) guarantees stability of the system. In this review, it
is recalled that for LTI systems, the Lyapunov function is
merely a quadratic form of the state vector and the overall
process of investigating stability ends up in solving the
Lyapunov equitation. The solution,

when it exists, is unique.

2. Preliminaries

2.1. Abbreviations And Symbols
R Set of real numbers

R™ n dimensional euclidian space
x(t) State vector x(t) € R®
1Bl Euclidian norm = VxTx of x(t)

0s(xo) Neighbourhood of x, ofradius § € R
V =V(x,t) Scalar Function V:R®* x R - R

V(x,t) Time dérivative of V ; %=
VV. f(x)
VV Gradient of V with respect to x(t); VV = Z—Z =

av av 1T
axy’ T axy

LTI Linear Time Invariant System
P= PT>0 P symmetric positive definite
matrix asin xTPx > 0 if x # 0.

2.2. Basic Definitions
Let x(t) € R"; this is referred to as state vector of an
autonomous system in (1).

x=fx) 1)

Definition 1: Equilibrium Point
If xo=x(ty); f(x)=0, to€R, then x, is an
equilibrium point.

0a(xo) = {x: llx — xoll < d};
Euclidian norm of x(t).

llxll = VxTx is the

Definition 2: Stable Equilibrium Point
If x, is an equilibrium point , then x(t) =x, is a
trajectory of the system.

An equilibrium point x, is stable in the sense of
Lyapunov if :

Ve>0,36>0:
Vit>t,.

x(to) € Os(x0) = x(t) € O.(x)

Any trajectory starting close to the equilibrium point remains
close to it.

Definition 3: Asymptotic Stability / Asymptotic Stability
in the large

An equilibrium point x, = x(t,) is asymptotically stable
in region D if :

x(ty) ED = x(t) > xy as t > 400

Any trajectory starting sufficiently close to the equilibrium

point, will eventually approach it.This ius depicted in figure
Figure 1.(a).
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An equilibrium point is said to be asymptotically stable in
the large if it is asymptotically stable and every motion
starting at any point in the state space , returns to that point as
t tends to infinity as shown in figure Figure 1.(b).

It is obvious from the above that asymptotic stability is
equivalent to Lyapunov stability. Lyapunov theory is used to
make conclusions about trajectories of system (1) without
finding the trajectories, i.e., one does not have to solve the
differential equation.
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Figure 1.(b) Asymptotic Stability in the large

Definition 4: Positive Definite Function

A scalar function V =V(x,t) from x(t) ER® to R ,
is said to be positive definite if

) V=0« x=0;

i) V+0 if x#0

i) V>0 ifx#0

Definition 5 : Lyapunov Function

Any scalar positive definite function V =V(x,t) that
satisfies condition state in (1), is called a Lyapunov
function for the system.

Vi t) =<0 (1)

Definition 6 : Lie Derivative
Given s scalar function V = V(x,t), the time derivative can
be computed as in equation (2).

Vi t) =S = V() )

The vector VV (x,t) is the gradient of the scalar function
V =V(x,t) and the dot product VV.f(x) of the gradient
vector of V =V(x,t) with the vector field f(x) in
equation (2) , is referred to as directional derivative of

V =V(x,t) along the vector field f(x) or the Lie
derivative of V =V (x,t) along f(x).

2.3. Lyapunov’s Second Method (Direct Method)
The Lyapunov’s Second Method, which is now referred to as
the Lyapunov Stability Theorem, makes use of a Lyapunov
function to check the stability of an equilibrium point of a
system.

The system (1) is stable if there exists a Lyapunov function
V =V(x,t) forit.

2.3.1. Lyapunov  Criterion
Equation

An autonomous linear system is given in equation (3).
x=Ax ... 3)
The matrix A is Hurwitz (its eigenvalues have negative real
parts). The existence of a Lyapunov function V(x) as in
equation (4), where P= PT'>0,a positive
definite symmetric matrix, guarantees stability of the system
in (3). In other words, this is a sufficient condition for
stability.

And Lyapunov

V(ix) =xTPx ... 4)

V(x) >0 for all x(t) and V(x) =0 if and only if
x(t) =0.

V(x) = xTPx + xTPx= (Ax)"Px + xTPAx = xT(ATP +
PA)x <0

forall x # 0.

There exists Q=0T >0 so that V(x) = % =

xT(ATP + PA)x = —xTQx

This  provides necessary and sufficient conditions  for
stability of the autonomous system (3).

This can be expressed as in (5) and (6) below :
ATP+PA<O0 .. (5)

ATP+PA=-Q (6)

The expressions (5) and (6) are the Lyapunov inequation
and equation, respectively.

The matrix P = PT >0 is to be found while Q = QT >0
is given. The matrix A must be Hurwitz ; in other words,
all eigenvalues must have negative real parts.

PT = P > 0, then the eigenvalues are real.

[IP]| = Appax (P) = the maximum eigenvalue of P. R(x) =
xTPx _ xTPx

xTx  |lxl?
Any vector x that minimizes R(x) is an eigenvector
Ax = Ax.
And so A= R(x)=
X X X
(m)TP (m) = UTPU; v = m
lmin(P) =< R(x) =< lmax(P)
min R(x)=Apin(P)
max R(x) = Apax(P)
0 < Amin(P) x> < xT (#)Px(t) < Amax(P) lIx(®)1I?
0 < Apmin(P) xTx < xTPx < Appar(P) xTx
V(x) = _XTQx < _)lmin(Q)xTx < Anin(Q)
Amin(Q)
- lmax(P)

xTPx _ . _
ke for that eigenvector R(x) =

xTPx = —aV(x) <0
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We have proved that , in liear case, a quadratic Lyapunov
function is deacreasing with time (Raktim Bhattacharya,
2023).
Given a particular Q > 0, the P matrix is found as in
equation (7).

P= fooo eATtQeAt 4t 7)

Proof:
ATP +PA

— fm(ATeATthAt
0
“ d
+e4"tQeAt A)dt =f - (" tQe )t
0
= e“‘Tth““lzo = —Q.

2.3.2. Uniqueness of Solution to the Lyapunov Equation
Assume now that P satisfies the matrix Lyapunov equation
(7). Suppose that there exists another matrix, say P that also
solves (6).

Then we have equations (6) or (8) and (9) that
simultaneously hold.

ATP +PA=—(Q ®)

ATP + PA = —0. )
Subtracting (9) from (8) we get (10).
AT(P-P)+(P-P)A=0 (10)

This implies that  e4"t[AT(P — P) + (P — P)A]e?t =
Sle?"t(P—P)e*] =0

Therefore eATt(P — P)e”t = constant matrix M ; for any
value of t.

In particular, M = P—P for t=0 and if t goes to
infinity, then M = 0.

This means that P—P =0 or P=P.

In other words, the solution, when exists, is unique!

2.3.3. Application

The following in (14) is a Lyapunov Function to the system
(11).

_ v (P11 P12
Vix) =x (P1z pzz)x (14)

It has applied the concept to a nonlinear damped pendulum.
Phase portraits sketches have been shown for some arbitrary
initial conditions. The intent was to keep the paper short , so
as to keep attention to the main concern : stability in the sense
of Lyapunov.

Example:
_ (0 1
A= (_ 3 _2)
In MATLAB, type: help lyap
Solve continuous-time Lyapunov equations.

X = lyap (A, X) solves the matrix Lyapunov equation AX +
XA'+Q=0

Be careful for the syntax!

PA+ A’P+P=0

To solve for matrix P above, we should write : lyap (A’, P)

It appears that the MATLAB Lyapunov equation is the
transpose of the Lyapunov equation we actually use!
Assuming Q =1; thenlyap (A’, )
p= (1.3333 0. 16671)

0.1667 0.3333

3. Conclusion
This paper has presented the Lyapunov stability theory and its
application to an LTI. The keystone principle is the concept of
Lyapunov function. In linear systems, the whole process
consist of solving the so called Lyapunov equation who has a
unique solution, when exists.

Appendix Al

Matrix Exponential ~ ¢(t) = e4t

This matrix P(t) = et helps to solve the equation
All.
x=%=Ax. .. ALL
dt

Where x(t) € R", with x(0) = x, A isan nxn
matrix.

In the literature, there are many ways of getting ¢(t).One
way is through the Laplace Transform. The bounded causal
signal  y(t) has the Laplace Transform Y(s) defined in
Al.2.

Y(s) = [ y()e™st dt ... AL.2.

Taking the transform for each side in equation Al.l; one
gets the following equation  sX(s) —xo =4 X(s). or
finally as equation Al1.3.

X(s) = (sl —A) 1x,. ... Al3.

Equation Al1.3 is the Laplace Transform of equation Al.4
, in time domain.

x(t) = p(t)xy = e4txy. ... Al4.

Hence (sI —A)~! is Laplace Transform of ¢(t) = e4t.
The following properties hold for the matrix exponential

o (t) = et

a) o¢(t) = et
b) B() = T, o
9 $0)=1

d) = (p®) = Ap(t)

e) ()t =gp(-t) =4
f)  Bo(t) = ¢p(t)B if BA = AB

Appendix A2

A2.1. Symmetric Positive Definite Matrix

The primary definition of a positive definite matrix P is the
following.

For any vector x =x(t) e R", if x(¢t) #0; we have
xTP x >0 . This is written as P > 0 . This definition, based
on the energy (Lyapunov’s function) is fundamental in control
systems.
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It can be shown that such a matrix P is necessarily symmetric
(because only a real symmetric matrix has its eigenvalues
real) | Hence, the notation P = PT >0

Given two positive definite matrices P = PT > 0, Q = QT >

0>0;
(o o)>0

—P < 0 (negative

Itis also truethat (P+Q) >0 and

If P >0 (positive definite) , then
definite).

A matrix that is neither positive definite nor negative definite,
is indefinite.

A2.2. Equivalent Statements for a Definite Matrix

To begin with, the matrix P is a positive definite matrix if and
only if P issymmetric and PT =P > O . For any given
positive definite square matrix P >0 of size n, the
statements (i), through (x) are equivalent.

i The n pivotsof P are strictly positive (they
are reals).

ii. The n determinants of the main diagonal of P are
positive.

iii. The n eigenvalues of P are strictly positive (they
are reals).

iv. For any vector = x(t) e R™ , if x(t) #0; we
have xTP x >0.

V. P=RTR where R has its columns linearly

independent.

Vi. The Cholesky’s  decomposition P = LLT is
possible.

vil. The n determinants referred to in above, are

Jeees

defined as |P,| = [pu,l; IPol= [0) P7°]

|P,| = det(A) . This the Sylvester criterion.

viii. The Schur complement is positive

ix. If P>0
singular.

X. P=UAUT ;UUT =1 .
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