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Abstract  

This brief paper  is  a review of   the classical  Lyapunov theory, also referred to as  Lyapunov’s 

direct method  or Lyapunov’s second method. The Lyapunov theory  uses the concept of 

Lyapunov function of the system to draw conclusions on system  stability, without actually solving 

the differential equation of the system motion. Some primary definitions are recalled and 

uniqueness solution issue for the Lyapunov equation is addressed for  linear systems. 

Key words:  Asymptotic Stability, Lyapunov Stability, Lyapunov  function, Linear Time Invariant 

System (LTI). 

1. Introduction 
In Control theory, stability is the basic  requirement for prior 

to  any attempt to make use of any system. One method of 

investigating stability, widely  used, is the Lyapunov theory  

introduced by  Alexandr Mikhailovich Lyapunov (1892). In 

his approach, the energy  function of the system, or any other 

similar function (later on named  after him: a Lyapunov 

function)  guarantees  stability of the system.  In this review, it 

is recalled  that for LTI systems, the Lyapunov function is 

merely a quadratic form of the state vector and  the overall 

process of investigating stability ends up in solving the  

Lyapunov equitation.  The solution, 

 when it exists, is unique. 

2. Preliminaries  
2.1. Abbreviations And  Symbols 

      Set of real numbers 

              n  dimensional euclidian space  

  ( )         State vector     ( )     

‖ ‖             Euclidian norm  √      of    ( ) 

  (  )      eighbourhood of        of radius          

   (   )     Scalar Function    V:                      

 ̇(   )                                     
  

  
 

    ( )   

   Gradient of     with respect to   ( );    
  

  
 

[
  

   
    

   
]
 
    

LTI    Linear Time Invariant System  

            P  symmetric  positive  definite 

matrix as in                 ≠  . 

2.2.  Basic Definitions 

Let    ( )    ;  this is referred to as state vector of an 

autonomous system  in  (1). 

 ̇   ( )           …          (1) 

Definition 1:  Equilibrium Point 

If       (  )     (  )   ,     , then    is an 

equilibrium point.   

    (  )  *   ‖    ‖   +;    ‖ ‖  √     is the 

Euclidian norm of    ( ). 

Definition 2:   Stable Equilibrium Point 

If      is  an  equilibrium point , then    ( )      is  a 

trajectory of the system.  

An equilibrium point      is  stable  in the sense of   

Lyapunov if : 

               (  )    (  )    ( )    (  ) , 

       . 

Any trajectory starting close to the equilibrium point  remains  

close to it. 

Definition 3:   Asymptotic  Stability / Asymptotic Stability 

in the large 

An equilibrium point       (  )  is  asymptotically  stable   

in region D if : 

  (  )     ( )                . 

Any trajectory starting sufficiently close to the equilibrium 

point, will  eventually approach it.This ius depicted in figure 

Figure 1.(a).  
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An equilibrium point is  said to be asymptotically  stable   in 

the large  if it is asymptotically stable and every motion 

starting at any point in the state space , returns to that point  as  

t  tends to infinity as shown in figure  Figure 1.(b). 

It is obvious from the above that  asymptotic  stability  is 

equivalent to Lyapunov stability. Lyapunov  theory is used to 

make conclusions about trajectories of  system  (1) without 

finding the trajectories, i.e., one does not have to solve the 

differential equation. 

 
Figure 1.(a) Asymptotic  Stability 

 
Figure 1.(b) Asymptotic Stability in the large 

Definition 4: Positive Definite Function 

A scalar function      (   )    from   ( )       to         

is said to be positive definite if  

 i)              ; 

ii)     ≠     if   ≠     

   )          if   ≠     

Definition 5 : Lyapunov Function 

Any scalar  positive  definite function     (   )  that 

satisfies condition  state in  (1), is called  a  Lyapunov 

function for the system.   

 ̇(   )  
  

  
                …          (1) 

 

Definition 6 : Lie Derivative 

Given s scalar function      (   ) ,  the time derivative can 

be computed as  in equation (2).   

 ̇(   )  
  

  
     ( ) ……….  (2) 

The vector     (   ) is the gradient of the scalar function   

   (   )  and  the dot product       ( ) of the gradient 

vector  of     (   )  with the  vector field    ( )  in 

equation   (2)  , is referred to as  directional derivative  of  

   (   )   along the vector field   ( )  or the Lie 

derivative   of     (   )   along    ( ) . 

 

2.3. Lyapunov’s Second Method (Direct Method)   

The Lyapunov’s  Second Method, which is now referred to as 

the Lyapunov Stability Theorem, makes use of a Lyapunov 

function to check the stability of an equilibrium point of a 

system.  

The system  (1)  is stable  if  there exists a  Lyapunov function  

   (   ) for it.  

2.3.1. Lyapunov Criterion  And Lyapunov 

Equation 

An autonomous linear   system is given in equation  (3). 

  ̇        …               (3) 

 The matrix      is Hurwitz (its eigenvalues have negative real 

parts). The existence   of  a  Lyapunov function   ( )  as in 

equation (4), where              a positive 

definite                 , guarantees stability of the system 

in (3). In other words, this is a sufficient condition for 

stability. 

 ( )        …            (4) 

 ( )                 ( )  and  ( )     if  and only if   

  ( )    .  

 ̇( )   ̇        ̇=   (  )            (    

  )      

 for all   ≠   .   

 There exists          so   that     ̇( )  
  

  
  

  (      )         

This  provides necessary and sufficient conditions  for  

stability of  the autonomous system  (3).  

This  can be expressed as in  (5) and   (6) below :   

              …             (5) 

                    …         (6) 

The expressions  (5)  and  (6)  are the  Lyapunov  inequation  

and equation, respectively.  

The matrix          is  to be found   while          

is  given.  The matrix      must be   Hurwitz ;  in other words, 

all eigenvalues must  have negative real parts. 

      ,  then the eigenvalues are real. 

‖ ‖      ( )   the maximum eigenvalue of     .   ( )  
    

   
 
    

‖ ‖ 
          

Any  vector      that minimizes   ( ) is an eigenvector     

     . 

 And  so          ( )  
    

   
 =  for that eigenvector  ( ) = 

(
 

‖ ‖
)  .

 

‖ ‖
/       ;      

 

‖ ‖
       

     ( )   ( )      ( )    

    ( )=    ( )      

      ( )      ( )        

        ( ) ‖ ( )‖
    ( )  ( )      ( ) ‖ ( )‖

   

                ( )  
             ( )  

    

 ̇( )             ( ) 
        ( )

 
    ( )

    ( )
        ( )    
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We have proved that , in liear case, a quadratic Lyapunov 

function is  deacreasing with time  (Raktim Bhattacharya, 

2023). 

Given a particular          the    matrix  is found  as in 

equation (7).  

    ∫   
      

 

 
                            …            ( ) 

Proof:  

      

 ∫ (    
      

 

 

   
       )     ∫    

 

  
(  

      
 

 

)   

   
      |

 

 
   . 

2.3.2. Uniqueness of  Solution  to  the Lyapunov Equation 

 Assume now that   satisfies the matrix  Lyapunov equation  

(7).  Suppose  that there exists another matrix, say  ̃  that also  

solves (6).   

Then  we have   equations  (6) or (8)   and   (9)   that 

simultaneously hold.  

                           …                (8)    

    ̃   ̃    .                …                (9)    

Subtracting (9)  from  (8)   we get  (10). 

  (   ̃)  (   ̃)                 …                (10)    

This implies that      
  [  (   ̃)  (   ̃) ]    

 
 

  
[  

  (   ̃)   ]    

Therefore   
  (   ̃)                      ; for any 

value of    

In particular,       ̃  for        and  if     goes to 

infinity, then     .  

This  means  that      ̃                 ̃. 

 In other words, the solution, when exists, is unique! 

2.3.3. Application 

The following  in  (14) is a Lyapunov Function to  the system 

(11). 

 ( )    .
      
      

/       …                (14) 

It  has  applied the concept to a nonlinear damped pendulum. 

Phase portraits sketches have been  shown for some arbitrary 

initial conditions. The intent was to keep the paper short , so 

as to keep attention to the main concern : stability in the sense 

of Lyapunov.  

 Example: 

   .
  
     

/ 

In MATLAB,  type :  help  lyap      

 Solve continuous-time Lyapunov equations. 

X = lyap (A, X) solves the matrix Lyapunov equation  AX + 

XA' + Q = 0 

Be careful for  the syntax!  

PA +  A’P + P = 0  

To solve for  matrix P above,  we should write  : lyap (A’, P)  

It appears that the MATLAB Lyapunov equation is the 

transpose of the Lyapunov equation we actually use! 

Assuming  Q = I ;  then lyap (A’, I) 

   .
                  
             

/ 

3. Conclusion 
This paper has presented the Lyapunov stability theory and its 

application to an LTI. The keystone principle is the concept of 

Lyapunov function. In linear systems, the whole process 

consist of solving the so called Lyapunov equation who has a 

unique solution, when exists. 

Appendix A1 

Matrix Exponential      ( )      

This matrix      ( )         helps to solve the equation    

A1.1. 

    ̇  
  

  
    .  …  A1.1. 

Where  ( )             ( )             is an          

matrix.  

In the literature, there are many ways of getting   ( )   One  

way   is through the  Laplace Transform.  The  bounded causal 

signal    ( )  has the Laplace Transform    ( )  defined in  

A1.2.  

  ( )  ∫   ( )    
 

 
     … A1.2. 

Taking the transform for each side in equation  A1.1;  one 

gets  the following  equation      ( )       ( ).  or   

finally  as  equation  A1.3. 

  ( )  (    )    . …   A1.3. 

Equation  A1.3   is  the Laplace Transform  of equation  A1.4 

, in time domain. 

 ( )   ( )    
    .   … A1.4. 

 Hence   (    )    is Laplace Transform  of   ( )     .             

The following properties hold for the matrix exponential  

 ( )     .               

        

a)  ( )     .      

b)  ( )  ∑
    

  
 
           

c)  ( )    

d) 
 

  
( ( ))    ( ) 

e) ( ( ))    (  )       

f)   ( )   ( )               if                  

 

Appendix A2 
A2.1.   Symmetric Positive Definite  Matrix 

The primary definition of a positive definite matrix   is the 

following.  

For any vector      ( )     ,  if   ( ) ≠   ;  we have  

        0 . This is written as      .  This definition, based 

on the energy (Lyapunov’s function) is fundamental in control 

systems. 
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It can be shown that such a matrix   is necessarily  symmetric 

(because only a real symmetric matrix has its eigenvalues 

real) !  Hence, the notation           

Given two positive definite matrices       ,       

     ;  

It is also true that   ( +  )         and         (
  
  

)   . 

If      (positive definite) , then       (negative 

definite).   

 

A matrix that is neither positive definite nor negative definite, 

is indefinite. 

 

A2.2.  Equivalent Statements for a Definite Matrix 

To begin with, the matrix    is a positive definite matrix if and 

only  if     is symmetric   and          . For any given 

positive definite square matrix      of  size   , the 

statements   (i), through  (x) are equivalent.  

i. The         pivots of      are  strictly  positive (they 

are reals). 

ii. The    determinants of  the main  diagonal of    are 

positive. 

iii. The     eigenvalues of      are  strictly positive (they 

are reals). 

iv. For any vector   ( )     ,  if   ( ) ≠   ;  we 

have          0 . 

v.        where     has  its  columns linearly  

independent. 

vi. The  Cholesky’s  decomposition         is  

possible.  

vii. The    determinants referred  to in  above,  are 

defined as |  |  ,   -; |  |   0
      
      

1  …; 

|  |      ( ) . This the Sylvester criterion.            

viii. The Schur complement is positive 

ix. If          then         and hence   is non-

singular. 

x.        ;        . 
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