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Abstract 

This article critically examines the details of the corresponding theoretical problem of particle 

scattering in non-relativistic quantum mechanics. The discussion proceeds in two directions: one 

- the correctness of physical and mathematical interpretations of individual details of the 

scattering problem; second - checking the correctness of mathematical methods used in specific 

mathematical calculations. Details of the scattering problem are pointed out, whose existing 

interpretations contradict the basic principles of quantum mechanics. A detail of mathematical 

calculations is also pointed out, contradicting the principle of correct calculation and leads the 

corresponding calculations to erroneous results. After correcting this erroneous mathematical 

method, it becomes clear that the problem lies in the initial mathematical algorithm itself, which 

is used to formulate the theoretical problem of scattering. 

Index Terms- quantum superposition; Schrödinger stationary equation; scattering problem; 

mathematical algorithm; Born iteration method; Mott’s formula. 

 

INTRODUCTION  
The consideration of the scattering problem corresponding to 

elastic collisions played a significant role in the formation of 

quantum mechanical concepts. One such important issue is 

the phenomenon of interference of probability amplitudes. 

Quantum mechanics textbooks indicate two initial proofs of 

the quantum superposition phenomenon (see, e.g., (Feynman 

et al, 1963), (Feynman et al, 1965)): 

1. "Physical alternatives, which cannot be 

distinguished experimentally from each other and 

whose corresponding probability amplitudes 

participate in quantum superposition sums, always 

interfere." 

2. "Quantum superposition and the corresponding 

interference are purely quantum phenomena and 

have no analogues in classical mechanics." 

These statements are considered one of the main 

characteristics of the quantum nature of the micro-world, and 

to indicate their essence, the authors of the textbooks 

(Feynman et al, 1963) and (Feynman et al, 1965) use the 

following examples: Let's say particles A and B collide along 

the X-axis and scatter by Coulomb interaction. The 

description is made in their center of mass system. Two 

detectors are mounted along the Y-axis from the center of the 

reference system in opposite directions, which we will mark 

with indices 1 and 2. Let    (   ) denote the state vector 

corresponding to the probability amplitude if after the 

collision - particle A is fixed in detector 1, and particle B in 

detector 2. Let    (   ) correspond to the probability 

amplitude when particle A is fixed in detector 2, particle B in 

detector 1. According to quantum mechanical concepts - when 

particles A and B are different, we can empirically distinguish 

the physical states corresponding to    (   ) and    (   ) 

from each other, and according to (Feynman et al, 1965) - 

only for this reason, these physical states represent mutually 

exclusive alternatives. In this case - the total probability that 

particles A and B will hit the first or second detector should 

be calculated by the standard rule of adding probabilities: 

W(A; B) = |   (   )|² + |   (   )|² = 2     ; 
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This addition rule is standard in the sense that the same rule is 

used when describing probabilistic results of random events 

involving macro bodies. When particles A and B are identical, 

it becomes impossible to distinguish the physical states 

corresponding to the state vectors    (   ) and    (   ), 

and therefore - according to the same authors, the 

corresponding physical states should no longer be considered 

as mutually exclusive alternatives and in this case, to calculate 

the total probability we should use the quantum mechanical 

rule of adding probability amplitudes: 

W(A; A) = |   (   ) +    (   )|² ; 

Since the state vectors corresponding to    (   ) and 

   (   ) are defined by the same Schrödinger equation, then 

even without solving the equation explicitly, we can assume 

that the conditions are satisfied:   (   )     (   ). 

Accordingly - we will get: 

W(A; A) = |2   (   )|² = |2   (   )|² = 4    ; 

That is, in the case of right-angle scattering of identical 

particles, the numerical coefficient of the total probability 

turns out to be twice as large as in the case of different 

particles. This difference is considered a quantitative 

demonstration of the essence of the quantum interference 

phenomenon corresponding to quantum superposition. 

Explicit indication of these pairs of probability amplitudes 

implies solving the corresponding Schrödinger equation. The 

explicit forms of these solutions should also confirm the fact 

of the quantitative difference between numerical coefficients 

of W(A; B) and W(A; A) mentioned above. In the case of 

identical particles, the corresponding explicit expression - on 

the example of elastic scattering of α-particles, was first 

indicated by Mott (see (Mott, 1930)). The obtained theoretical 

result was in full agreement with the above-mentioned rule of 

adding probability amplitudes. In the quantum mechanics 

literature, there is also a publication (see (Chadwick, 1930)) 

which describes the empirical picture of scattering formed as 

a result of α-particle collisions. The author of the publication - 

J. Chadwick, makes the claim: The results of the theoretical 

calculation obtained by Mott in the α-particle scattering 

problem are in agreement with the statistical picture obtained 

from the experiment.  

This coincidence would indeed be an infallible argument for 

proving the real existence of the physical phenomenon 

corresponding to the interference mixing of probability 

amplitudes in quantum superposition sums, were it not for the 

question that we posed regarding this issue in Section 5 of the 

text (see (Baghaturia et al, 2025b)) and which also became the 

basis of the research presented in this publication: How 

correct were the mathematical calculations by which the 

theoretical expressions of the pair - {   (   );    (   )} 

were obtained for the α-particles. 

Below, we will analyze the details related to this issue, both 

from the point of view of mathematical correctness and the 

self-consistency of physical interpretations. 

CHAPTER I: Brief History of the Issue and 

|in> States of the Scattering Problem 
The formulation of the mathematical algorithm for the 

scattering problem begins with the analysis of the general 

form of the Schrödinger equation. In our case of interest - for 

α-particles, the Schrödinger equation has the form: 

  
  ( ⃗      ⃗     )

  
  =   ̂( ⃗  ;  ⃗  ) Ψ( ⃗  ;  ⃗  ; t) ; 

       ̂( ⃗  ;  ⃗  ) =  ̂ ( ⃗  ) +  ̂ ( ⃗  ) +   /| ⃗   -   ⃗  | ;          (1) 

 ⃗   and  ⃗   are the radius vectors of the particles;  ̂ ( ⃗  ) and 

 ̂ ( ⃗  ) are the corresponding free Hamiltonian operators of 

the particles. Since the operators ∂/∂t and Ĥ commute, the 

eigenfunction of the Hamiltonian operator: 

    ̂( ⃗  ;  ⃗  ) Ψ( ⃗  ;  ⃗  ) = E Ψ( ⃗  ;  ⃗  ) ;                  (2) 

should also be a solution of (1). Equation (2) is called 

stationary because it does not contain dependence on the time 

parameter. The operators  ⃗   and  ⃗   do not depend on the time 

parameter and in the coordinate representation, they 

correspond to multiplication by ordinary numbers. Note that 

solving the Schrödinger equation does not imply indicating 

the time dependence of coordinates or other physical 

characteristics. Therefore, the spectrum of eigenvalues - 

corresponding to individual physical characteristics, 

corresponds to sets of time-independent numbers that are 

defined as statistical sets as a result of empirical observation. 

Since the elements of statistical sets are not connected by 

dynamic links, only the numerical values of the state vector, 

for which the time equation (1) is written, are connected by 

chronological links. Since these solutions of the Schrödinger 

equation contain the eigenvalues of the  ⃗   and  ⃗   operators 

parametrically, this scheme of consideration implies the 

existence of a reference frame, in which - these quantities are 

considered as ordinary numbers. It is also implied that the 

reference system is inertial and therefore we can indicate 

quantitative physical regularities using them. It is also implied 

that the coordinates of the origin of the reference system 

correspond to zero numerical values and at the same time - the 

origin is stationary. Accordingly, it is implied that we can 

simultaneously and accurately indicate the numerical values 

of the coordinates and momenta of the origin of the reference 

system. In the quantum-mechanical description, such a 

quantum object does not exist, which indicates that the 

reference system of these descriptions corresponds to a 

classical object, i.e. - a macro-sized observer. Within the 

framework of such an interpretation it can be explained why 

numbers  ⃗   and  ⃗   are independent of time and their 

corresponding numerical values represent only a set of 

statistical numbers. In the Schrödinger equation, the status of 

all the quantum-mechanical operators eigenvalues can only be 

statistical and not chronological-dynamic. This fact is directly 

related to the observer factor introduced by Bohr in the 

quantum-mechanical description. The Ψ-functions of the 

solution of equations (1) and (2) should correspond to the 

same status: The changes in the mentioned circumstances will 
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automatically lead to changes in these numerical distributions. 

If those changes occurs with some temporal regularity, this 

regularity should be reflected in  the full Hamiltonian, by 

means of which - those changes will be reflected in the Ψ-

functions as well. By means of the superposition sums 

constructed with the obtained spectrum of Ψ-functions, we 

will obtain the mathematical representations of quantum 

ensembles depending on the time parameter. 

For reference systems of such nature, it is entirely permissible 

to introduce the center of mass system, which is easily 

implemented by the transformation of variables, defined in 

classical mechanics. As a result, (2) takes the form: 

 ̂( ⃗  ;   ) Ψ( ⃗  ;   ) = [ ̂ ( ⃗ ) +  ̂ (  )] Ψ( ⃗  ;   ) = E Ψ( ⃗  ;   ); 

 ̂ (  ) = - (M/2    )(
 

   
 )  +   /|  |; 

  ̂ ( ⃗ ) = -.
 

  
/ (

 

  ⃗ 
 )  ;                                (3) 

(In our case of interest - with identical particles -      = 

M/2). Because the operators  ̂( ⃗  ;   ),  ̂ ( ⃗ ) and  ̂ (  ) 

commute with each other, we can represent the function Ψ( ⃗  

;   ) in the form Ψ( ⃗ ;   )  =   ( ⃗ )   (  ), where: 

  ̂ ( ⃗ )   ( ⃗ ) =      ( ⃗ );      ̂ (  )   (  ) =      (  ) ;         

   +    = E ;                                          (4) 

If we take into account that the Hamiltonian of the center of 

mass  ̂ ( ⃗ ) commutes with the operator of the momentum of 

the center of mass, then the function   ( ⃗ ) can be represented 

as an eigenfunction of this momentum operator: 

    ( ⃗ ) = exp(i ⃗  ⃗ ) ;       ⃗   =   ;                           (5) 

Unlike the center of mass Hamiltonian, the Hamiltonian 

corresponding to relative motion -  ̂ (  ), does not commute 

with its corresponding momentum operator, which is why - 

the function   (  )  cannot be represented in a form similar to 

(5). We can represent it in the form of a superposition of plane 

waves, which at the same time corresponds to the Fourier 

transform operation: 

  (  ) = ∫    exp(i    )   (  ) ;                           (6) 

Such a   (  ) function no longer represents an eigenfunction 

of the momentum operator corresponding to the    -variable 

with a fixed eigenvalue and can be used as a form to search 

for eigenfunctions of   ̂ ( ⃗ ). 

Let's analyze the mathematical algorithm for determining 

  (  ) indicated in quantum mechanics textbooks (see, for 

example, (Schweber, 1961), (Davydov, 1976), (Blokhintsev, 

1964)). In the stationary equation: 

[ 
 

   
   +    ]   (  ) = ( /|  |)   (  ); 

     = m  ;       = m   ;                                 (7) 

The authors introduce the so-called "asymptotic |in> state" in 

the solution, for which   (  ) is represented as: 

   (  ) = C   (  ) + , 
 

   
     -   {( /|  |)   (  )};                 

(8) 

  (  ) corresponds the solution of the equation: 

         [ 
 

   
   +   ]   (  ) = 0;                                   (9) 

In expression (8), the coefficient C can be any number, 

including zero. The solution of (9) can be represented in the 

form of a plane wave:   (  ) = exp(i ⃗   ), whose corresponding 

momentum must satisfy the condition  ⃗   =   . Since   (  ) is 

not related to the interaction, its corresponding plane wave is 

interpreted as the asymptotic |in> state of the   (  ) function 

and is defined as the limit when |  |   and V(  )   0. In 

some textbooks, the origin of this term is erroneously 

associated with the general principle of solving an 

inhomogeneous equation, according to which - if   (x) 

represents a particular solution of the equation: 

[ 
 

  
   +   ] F(x) = f(x); 

then the general solution is obtained by the sum F(x) =   (x) 

+ C   (x), where   (x) corresponds to the solution of the 

homogeneous equation obtained for the case f(x) = 0. The 

Schrödinger equation (7) represents a linear homogeneous 

equation, whose solution is not determined by this rule. In 

some textbooks, the reason for the origin of this term is 

indicated as the mathematical algorithm that was introduced 

in the Lippmann-Schwinger publication (see (Lippmann et al, 

1950)). In reality, this argument is not correct either. The 

authors of this publication attempted to obtain the time-

dependent Schrödinger equation by the same variational 

method, as the "Schwinger-Dyson" equations for Green's 

functions are obtained in quantum field theory. There is a 

fundamental difference between these two mathematical 

algorithms, because the Schwinger-Dyson equations are 

written with the condition of the existence of a so-called 

"external source". As a result, inhomogeneous equations are 

automatically obtained for Green's functions, while the 

Schrödinger equation represents a homogeneous equation - 

without the existence of any "external source". Therefore, in 

the Schwinger-Dyson equations, the Green's function 

corresponding to the so-called "free particle" appears uniquely 

defined both in the complete equation and in the iterative 

series of perturbation theory. While in (8) - an analogous term 

appears in the form of C   (  ) - that is, not uniquely defined 

and also allows the possibility of C = 0, which is 

fundamentally impossible in the case of Schwinger-Dyson 

equations. Nevertheless, there is still one important detail of 

similarity between (8) and the Schwinger-Dyson equation - in 

both equations, if we use the relation (8) multiple times in the 

term containing the interaction: 

  (  ) =   (  ) + , 
 

   
     -   {  (  )+ , 

 

   
     -     (  ) 

• 

  ( /|  |)} ( /|  |) = 

    =   (  ) +  , 
 

   
     -  {  (  )/|  |)} +   , 

 

   
     -  •    
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   {, 
 

   
     -   [  (  )/|  |]/|  |}= ··· ;                                (10) 

we will get exactly the same iterative series with respect to the 

whole powers of charge, as we write when solving the 

Schwinger-Dyson equation in the so-called - "perturbation 

theory". This series - as a possible method for solving 

equation (7), without any unnecessary and dubious additional 

arguments, was first introduced into consideration by M. Born 

in his 1927 publication (see (Born, 1927)). This method was 

called the "Born iteration method", in which   (  ) 

corresponds to the zero order of iteration, while   (  ) 

corresponds to the first order of iteration.   (  ) is defined as 

the solution of the equation: 

[ 
 

   
   +   ]   (  ) =   (  )/|  |;                   (11) 

As a rule, for   (  ), a plane wave parameterization is used: 

     (  ) = exp(i    );             =    ;                     (12) 

However, from general considerations - it would be better to 

use a parameterization of type (6): 

      (  ) =  ∫    exp(i    ) δ(  -    ) ;               (13) 

But, since the  ̂ (  ) operator commutes with the 

corresponding momentum operator, no attention is paid to the 

fact that the full Hamiltonian operator  ̂ (  ) does not 

commute with this operator and the parameterization 

indicated in (12) is always used. Using this parameterization, 

the |in> states of the scattering problem are defined for both 

particles participating in the collision. 

Such an interpretation was introduced in discussions by Born 

in the above-mentioned work, which was called - "Quantum 

mechanics of collision processes". In a later published book, 

titled - "Atomic Physics", the corresponding chapter of the 

same problem is called "derivation of Rutherford's formula in 

wave mechanics" (see (Born, 1963)). Presumably, such a 

transformation from the term "quantum" to "wave" should not 

only affect the title of the topic and may imply that the author 

also meant the essence of the topic. The point is that in similar 

discussions of solving Schrödinger's stationary equation - 

probability theory is used only at the level of terms - "Ψ-

functions, besides their wave nature, also represent probability 

amplitudes". The generation of the asymptotic |in⟩ state of the 

scattering problem also corresponds only to an artifact of 

wave mechanics and has nothing to do with the probabilistic 

nature of Ψ-functions. Therefore, in existing representations 

of quantum mechanics, they simply say the phrase: if in the 

regime of large r, the interaction potential rapidly approaches 

zero, the solution of equation (7) automatically transitions to 

the |in⟩ state when |  |  . We will address this issue in more 

detail below. 

CHAPTER II: |out> states in the Born 

iterative scheme 
In the mathematical algorithm for the scattering problem, the 

part that determines the asymptotic |out> state looks even 

more dubious. This part is realized by those terms of the 

iterative series that contain interaction potentials. The first 

such term corresponds to the function   (  ), which is defined 

by the relation: 

     (  ) = , 
 

   
     -     (  )/|  | = 

= ∫     [ (  -    ) exp(i      )]/|   |           (14) 

In the mathematical algorithm for introducing |out⟩ state 

vectors, the expression of the Green's function G(r-r') in 

coordinate representation is used, which has the form (see 

(Schweber, 1961), (Davydov, 1976), (Blokhintsev, 1964)): 

     (  ) = ,
 

   
         -    ( )(  ) =  

  =  -(  )   
   ,  |  |-

|  |
 ;                  (15) 

The superscript "+" indicates the rule for circumventing the 

pole in the Green's function, which is associated with the 

interpretation of the "scattered wave". Within this 

interpretation, |out⟩ states are also defined in the regime of 

"large |  |", for which - in the Green's function present in (14), 

is used a series expansion representation for the expression of 

the root: 

|   -   |= ,                -    = r ,    ⃗               -    =  

= r -  ⃗     + O(   );       ⃗  =   /|  | ;                                (16) 

For the Green's function, authors write the expression: 

   (   -    ) =  -(  )   
   ,  |  |    ⃗      (  |  |)-

|  |,   (  |  |)- 
 = 

                  =  -(  )   
   ,  |  |   ⃗    -

|  |
 + O(1/|  | ) ;                   

     ⃗ = k ⃗ ;         ⃗   =   ;                                   (17) 

Since the mentioned Green's function is generated in the 

expression of   (  ) containing the interaction, the  ⃗ -vector 

and its corresponding plane wave function are associated with 

the |out⟩ state vector - formed by the interaction. The relation 

 ⃗   =    =    , is associated with the interpretation of the 

elastic scattering condition. 

After this simplification, the analytical calculation of the 

corresponding integral is simplified, and using the "elastic 

scattering" condition, the final answer is written as follows: 

      (  ) = -        
   (   |  |)

|  |
 ∫       

   (         ⃗    )

|   |
  = 

                = - 
   (  |  |)

   |  |    (
 

 
)
 + O(1/|  | );          

            = (    ⃗ )/|  || ⃗ | = (    ⃗ )/    ;                         (18) 

This expression, which is called the Rutherford's formula, is 

mentioned in many quantum mechanics textbooks. It is 

necessary to note one technical detail here - the integral 

indicated in (18) is not uniquely defined in the |   |   limit. 

Therefore, obtaining the specified result requires the 

introduction of a certain mathematical recipe. For example, in 

(Davydov, 1976), this expression is obtained as the limiting 

case of a screened Coulomb potential V(r)     |  |    /|  |- 

when    →  . When using this potential in (18), the integral 
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becomes uniquely defined, and the expression indicated in the 

answer is obtained quite correctly. 

At first glance, it might seem that everything is in order in the 

mathematical algorithm mentioned above. However, it is not 

difficult to show that the series expansion method - used to 

obtain (18), is mathematically incorrect. To demonstrate this, 

let's rewrite the original expression with a simple 

transformation of variable as follows: 

    (  ) =  ∫     ,|   ||      |-       |   |      (      )  ;       (19) 

where for the parameter k, we have restored the imaginary 

part, defining by the pole circumvention prescription: k      

= (     )    = {k        + O(  )}. This recovery ensures 

the existence of the integral in the |   |   limit and also 

serves as an intermediate regularization, as happens during 

pole bypassing. This regularization plays the same role in (19) 

as the   |  |    factor in the screened Coulomb potential in the 

   →   limit. This complex numerical term (  ), cannot play 

the role of regularization in (18) because - unlike (19), where 

the (  ) parameter is multiplied by the sign-definite  (  |   |)-

factor, due to the use of the series expansion method in (18) - 

it is multiplied by the sign-indefinite  ⃗    - factor.  

If we also use the series expansion method indicated in (17) 

for |      |   in (19), we get: 

   (  ) = -(  )   ∫     exp[   |   |+    (   +  )] {1- ⃗    /|  | +  

               + O(     )} /|  ||   | = 

 = -(  |  |)   [exp(     )] {1+ (  |  |)  ⃗        + O(     )}• 

     ∫     {exp[   |   |+       ]}/|   |;                                         

(20) 

To evaluate this integral, let's switch to spherical coordinates: 

  J = ∫     exp[   |   |+       ]/|   |=  

     = 2π ∫    
 

 
  ∫      

 

  
 exp[   |   |+  |  ||   |    ] = 

     = ∫    
 

 
{exp[ (|  |    )  ] - exp[- (|  |    )  ]} |  |;  

(21) 

If we use condition for the elastic scattering - |  |= k, we will 

have for the obtained integral: 

J = ∫    
 

 
 { exp[        )  ] - exp[-       ]}/   = 

                                = 2  [
 

         - 
 

  
 ] ;                   (22) 

This expression does not have a limit as    , which means 

that the function   (  ) does not allow expansion in positive 

integer powers of (1/|  |). 

A natural question arises - what is the status of the expression 

indicated in (18), by means of which the differential cross-

section of elastic scattering of α-particles is calculated? We 

will answer this question in the following subsection. 

CHAPTER III: The Status of Rutherford's 

Formula in Wave and Quantum Mechanics 
To give a competent answer to the question posed in the 

previous subsection, it is necessary to try to evaluate the 

original integral without expanding in powers of (1/|  |). This 

is difficult to implement in coordinate representation because 

- the Green's function contains a transcendental exponential. 

Therefore, let's calculate   (  ) in the momentum 

representation: 

  (  ) = (  )   ∫    ∫    ,             -   • 

exp[i   (  -    ) +i      ]/|   |;                   (23) 

In the resulting expression, the integral over     corresponds to 

the Fourier transform of the Coulomb potential. The 

corresponding expression for this transform is easily obtained 

if we use the integral representation for 1/|   |:        

     ∫     exp[i(     )   ] [1/|   |] =       ∫   
 

 
       • 

     ∫     exp[i(   -  )    - y     = 4   /(     ) ;                        

(24) 

Using the same integral representation, the expression 

corresponding to the inverse Fourier transform is also easily 

obtained: 

 ∫    exp(i    )/    = ∫    ∫   
 

 
 exp(i     - y   ) = - 2  /|  |;  

(25) 

Accounting for the above, the original integral - without 

considering numerical coefficients - takes the form: 

  (  )     ∫    exp(i    ) ,             -    [(     ) -   = 

 = ∫    exp[ (     )  ] ,   (     )    -   [   -  ;     

(26) 

Let's evaluate the behavior of the integrand function in the 

ultraviolet and infrared regions of momentum values: In the 

ultraviolet region, i.e. - for large |  |, we asymptotically have 

an integral of the type ∫    [   -  , which converges. That is - 

in this region, the original integral is correctly defined. In the 

infrared region, i.e. - for small |  |, take into account the 

condition     =   , we will have ∫    [(   )(    )-   and the 

integral is logarithmically divergent. That is, in this region, 

the original integral is not correctly defined. For a clearer 

demonstration of this assertion, let's use the same integral 

representation for the denominators in (26) that we used 

above: 

,   (     )    -   [   -  = - ,             -   [   -   

= 

 = - ∫   
 

 ∫   
 

 
 exp[-(             )x -    y];    (27) 

After integrating over the momentum variable, we get: 

    (  )   ∫   
 

 
 ∫   

 

 
   ,  (    )-     • 

       exp{-[    +         +4     ]/4(y+i )} ;     (28) 

Let's make the transformation: x → xy and integrate over the 

y-variable - which corresponds to a correctly defined integral: 

   (  )     /|  | ∫   
 

 
 , (    )-   • 

  exp[-(    +√      ) /(1+i )] ;                           (29) 

As expected, the resulting integral converges for large x, but 

is logarithmically divergent for small x. 
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After the research carried out above, it is no longer difficult to 

notice what mathematical detail ensured the derivation of 

Rutherford's formula in "wave-quantum" mechanics. For this, 

it will be necessary to return to the expressions indicated in 

(18) and note the following: In the regime of large |  |, the 

series expansion procedure affects two functions - the 

exponential in the numerator and the root expression in the 

denominator. The series expansion procedure used for the 

function in the denominator is in full compliance with the 

correct mathematical algorithm of the series expansion and 

therefore - the following expression is completely correct: 

   *|  |,   .
|   |

|  |
/-+   = 

 

|  |
 {1+ O(|   |/|  | )};           (30) 

For the exponential function in the numerator, however, the 

series expansion operation is performed incompletely - only 

the root in the exponent of the exponential function is 

expanded in a series, while the expansion of the exponential 

function itself  is not performed. That is, a relation analogous 

to (30): 

   ,  |  |     ⃗      .
 

|  |
/- = 

  =    ,  |  |     ⃗    - {1+ O(|   |/|  | )};           (31) 

is no longer a correct notation. As a result, the    ⃗    - term is 

retained in the exponent, which ensures obtaining a result 

different from (22). Therefore, we can conclude: 

obtaining Rutherford's formula in "wave" and "quantum" 

mechanics represents only an artifact corresponding to the 

incorrect use of mathematical methods. 

It is easy to show that a similar result would be obtained if we 

used the representation indicated in (13) instead of (12) for the 

  (  ) function. 

Naturally the question arises: In the case of positive 

eigenvalues of the Hamiltonian operator for relative motion - 

does the stationary Schrödinger equation have a finite 

solution? 

Let's address this issue in the next subsection. 

CHAPTER IV: The Correct Method for 

Solving the Stationary Equation 
To give a competent answer to the question posed in the 

previous subsection, we need to understand what causes the 

emergence of infrared divergence in the integral 

representation of   (  ). It's easy to notice that this divergence 

would not occur if we didn't use the relation     =    in (26). 

Let's recall where this condition came from: solving the 

Schrödinger stationary equation in the zeroth order of Born 

iteration requires the introduction of this condition. Note that - 

when the Coulomb potential is replaced by a screened 

Coulomb potential - V(r)     |  |    /|  |, the same condition no 

longer causes infrared divergence. That is, the infrared 

catastrophe is generated when we use the iterative method in 

the case of the Coulomb potential. Conclusion - In the case of 

Coulomb interaction, the Born iterative method cannot be 

used. 

Regarding the above conclusion, let's recall the following: We 

use the same stationary equation to describe bound states with 

Coulomb potential, but in this case, the energy corresponding 

to the relative motion of the two-particle system is negative. 

Solving the corresponding stationary equation limits the 

allowable numerical set of eigenvalues of the Hamiltonian 

operator to a discrete spectrum. The numerical values of the 

spectrum become parametrically dependent on the interaction 

charges. Also, recall that: to obtain probability amplitudes 

corresponding to the bound state, the stationary equation must 

be solved completely. In the case of using the iterative 

method, the same result cannot be obtained. 

It should also be noted here, that: 

the explicit forms of these probability amplitude functions do 

not provide any information about the dynamics of motion of 

bound particles at discrete energy levels. This is in full 

agreement with the essence of probabilities - probabilities 

corresponds to statistical data sets of results of completed 

events and do not and cannot describe the processes of events. 

That's why - the solutions of Schrödinger's stationary 

equation, which - by definition, are objects of probability 

space, cannot give us information about any chronology of the 

course of processes and especially - about the dynamics of the 

course of processes. Based on general considerations of 

probability theory, neither the probabilities nor probability 

amplitudes corresponding to the scattering regime should give 

us information about the chronology of the scattering process 

itself. 

According to current quantum-mechanical concepts - despite 

the fact that the scattering regime and bound states correspond 

to the same equation, these equations should still be solved by 

different mathematical methods, as they correspond to 

fundamentally different physical phenomena. This view 

seems logical, since in particle scattering experiments, we 

prepare the impulses corresponding to the |in⟩ states of these 

particles and can assign them any numerical value. Therefore, 

when solving the corresponding stationary equation, it is 

automatically assumed that the eigenvalues of the 

Hamiltonian can neither be discrete nor dependent on the 

charge of the Coulomb interaction. The bound states and 

corresponding energies are determined by the process of 

bound state formation itself, which occurs without our 

participation. Based on these logical arguments, the 

abovementioned view seems natural and logical, if not for one 

question - are the physical phenomena corresponding to these 

two regimes really fundamentally different, or due to certain 

preconceptions, are we missing some details when observing 

them? To clarify this, let's point out the principal differences 

corresponding to these phenomena: 

1. In bound states, discretization of energy levels is 

observed, which is not observed in the scattering 

regime; 

2. In the scattering regime, interference-diffraction 

patterns are observed, which are not observed in 

bound states. 
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As recent simple experiments show (see (Peng, 2021), (Part 1. 

Baghaturia et al, 2025a)), it may turn out that behind these 

two seemingly entirely different phenomena stands a single 

common phenomenon, according to which interference 

patterns represent the same discretization phenomenon as the 

discretization of energy levels in bound states. The discrete 

energy levels of a hydrogen-like atom are obtained when we 

apply the physical requirements of probability normalization. 

As a result of the mathematical realization of this condition, 

the numerical values of the energy parameter become 

dependent on the eigenvalues of the square of the orbital 

angular momentum corresponding to the relative motion in 

the bound state. And if these values represent discrete 

numbers, the energy parameter corresponding to the bound 

state also becomes discrete. 

The orbital angular momentum operator corresponding to 

relative motion is constructed with the spatial vector and 

impulses corresponding to this motion and, in its form, fully 

corresponds to the orbital angular momentum operator of a 

free particle. Although this operator does not directly 

correspond to real particles, the finiteness and normalization 

conditions imposed on the objects of probability space also 

extend to the eigenfunctions of this operator, because they are 

used to construct the probabilistic characteristics of real 

particles. As a result, the eigenvalues of this operator turn out 

to be just as discrete as in the case of a real quantum object. 

Note that the equations corresponding to the eigenfunctions 

and values of both the square of the orbital angular 

momentum and its third component, have nothing to do with 

negative numerical values of energy, and the corresponding 

discrete spectrum is generated in the positive energy regime 

by itself when the above-mentioned physical conditions are 

imposed. It is precisely because of this that the energy 

spectrum of the bound state turns out to be discrete. 

On the other hand, quantum objects in the scattering regime 

also have orbital angular momenta with similar discrete 

spectra, although no one connects this fact with the so-called 

"interference" and "diffraction" patterns. As the analysis of 

the experimental facts indicated in (Peng, 2021) and (Part 1. 

Baghaturia et al, 2025a) reveals, the formation of "diffraction-

interference" patterns obtained on the screen as a result of 

quantum objects passing through slits occurs not by the 

mechanism corresponding to the Huygens-Fresnel 

mathematical principles introduced to describe wave 

propagation, but by mechanisms of rectilinear motion 

corresponding to geometric optics. That is, the photons 

emitted by the laser move in the form of corpuscles, and after 

colliding with the walls of the holes, the overall image of the 

traces they leave on the screen, which is mistakenly called the 

"interference phenomenon", actually has nothing to do with 

the mechanism of wave propagation determined by the 

mathematical principle of Huygens-Fresnel. 

If we carefully look at the diffraction patterns indicated in 

(Peng, 2021), (Part 1. Baghaturia et al, 2025a) - which can be 

easily obtained by anyone - we will also easily notice that 

these patterns correspond to the phenomenon of spatial 

discretization, which can only be explained by the scattering 

of laser beam photons at the boundaries of the slit. Therefore, 

the question naturally arises - is this spatial phenomenon of 

discretization not caused by the discretization of the orbital 

angular momenta of interacting objects participating in the 

scattering process. 

In order to support this idea with mathematical calculations, it 

is necessary to fully solve the corresponding stationary 

equation in the same way as is done in the case of bound 

states. This will not be an easy task, as the slit walls are not 

simple point-like quantum objects, and the case of photon 

scattering on them cannot be reduced to the problem of 

Coulomb scattering - the photon has no charge. However, 

since a similar pattern should be observed as a result of 

electrons passing through slits, it will be interesting to fully 

solve the corresponding equation of Coulomb scattering for 

charged objects and check - whether we will see any kind of 

mathematical indication of the aforementioned phenomenon 

of spatial discretization.  
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