
Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: MALOANI SAIDI Georges © Copyright 2025 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 18

Global Journal of Engineering and Technology [GJET].
ISSN: 2583-3359 (Online)

Frequency: Monthly

Published By GSAR Publishers

Journal Homepage Link- https://gsarpublishers.com/journal-gjet-home/

Advanced Programming Paradigms for Artificial Intelligence: Focus on Python and Julia.

By

MALOANI SAIDI Georges

PhD Student

Faculty of Science and Technology

Doctoral School of Distant Production House University (DPHU) in joint supervision and co-degree with the Peace

Academy of the United Nations

Finland

Abstract

Artificial intelligence (AI) is undergoing rapid transformation, driven by the adoption of

advanced programming paradigms. This study focuses on two major languages: Python, widely

used for its rich ecosystem and simplicity, and Julia, recognized for its high performance and

unique multiple dispatch paradigm. The main objective of this work is to analyze the impact of

advanced programming paradigms offered by these two languages on the development,

performance, and innovation in AI.

The methodology is based exclusively on qualitative documentary analysis: scientific articles,

technical reports, specialized books, and official documentation were reviewed to identify the

contributions, limitations, and perspectives provided by Python and Julia in the field of AI.

The results show that object-oriented and functional programming, which are prominent in

Python, facilitate the structuring, modularity, and maintenance of AI models, while Julia’s

multiple dispatch offers great flexibility and optimizes performance for computationally intensive

applications. The literature confirms that Python dominates rapid prototyping and the software

ecosystem, whereas Julia is gradually gaining ground in research and in fields that demand high

computational efficiency.

In conclusion, the choice between Python and Julia largely depends on project needs:

accessibility, community support, and rapid development for Python; performance, innovation,

and scalability for Julia. Their complementarity paves the way for new hybrid practices in AI.

Keywords: Python, Julia, programming paradigms, artificial intelligence, performance

1. INTRODUCTION
The rapid development of artificial intelligence (AI) has

profoundly transformed programming paradigms, imposing

new requirements in terms of flexibility, performance, and

code readability. Programming languages used for AI must

allow for the implementation of complex models, the

exploitation of parallelization, and the efficient handling of

massive data from machine learning and deep learning

(Russell & Norvig, 2021).

Over the past decade, Python has established itself as the

leading language in the AI community, thanks to its intuitive

syntax, its extensive library collection (TensorFlow, PyTorch,

Scikit-learn, etc.), and its strong integration with scientific

tools (Guo et al., 2020). Its popularity is also due to the

abundance of educational resources and active communities

supporting the sharing of knowledge and best practices

(VanderPlas, 2018). Despite its strengths, Python has

limitations in terms of raw performance, particularly for very

intensive scientific calculations or fine-grained parallelism

management. These limitations are leading some researchers

to explore other languages capable of bridging the gap

between ease of prototyping and computational efficiency

(Bezanson et al., 2017).

Julia was designed specifically for scientific computing and

AI, with the ambition of combining the syntactic simplicity of

Python with the performance of C. It is distinguished by its

ability to write high-performance code without sacrificing

expressiveness, making it a growing choice in AI research and

industrial applications (Perkel, 2019; Bezanson et al., 2017).

Article History

Received: 07/08/2025

Accepted: 14/08/2025

Published: 16/08/2025

Vol – 4 Issue – 8

PP: - 18-22

DOI:10.5281/zenodo.16

889501

https://gsarpublishers.com/journal-gjet-home/

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: MALOANI SAIDI Georges © Copyright 2025 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 19

Modern AI leverages various paradigms, including object-

oriented programming (OOP) for model structuring and

functional programming for elegant function composition and

data stream processing. Both Python and Julia offer tools to

integrate these paradigms, although Julia places greater

emphasis on the multiple-dispatch paradigm, facilitating the

extension of methods for new object types (Bezanson et al.,

2017; Millman & Aivazis, 2011). One of the major challenges

for advanced paradigms lies in managing parallelism and

distributed computing, which are essential for training AI

models on large datasets. Python relies heavily on external

libraries and C/C++ integration for performance, while Julia

allows for the generation of optimized compiled code and

offers native abstractions for parallelism (Edelman et al.,

2023; Guo et al., 2020).

Python's accessibility, reinforced by its rich ecosystem,

remains a decisive advantage for training and democratizing

AI. However, Julia is gaining ground in research, particularly

for the design of models requiring rapid execution or very

high-level computations. This shift is particularly evident in

the fields of simulation, big data analysis, and mathematical

optimization (Perkel, 2019; Innes et al., 2018).

The choice of paradigm and language depends on the specific

needs of AI projects, the desired level of abstraction, and

performance constraints. While Python continues to dominate

the AI ecosystem for its simplicity and ecosystem, Julia is

gradually establishing itself as a credible alternative for

advanced applications requiring speed, flexibility, and

paradigmatic innovation (Edelman et al., 2023). The

complementarity of these two languages heralds a shift toward

hybrid architectures, adapted to the future challenges of

artificial intelligence.

1.1. Research Question

How do the advanced programming paradigms implemented

in Python and Julia influence efficiency, performance, and

innovation in the development of artificial intelligence

applications?

1.2. Specific Research Questions

• How do object-oriented programming and

functional programming, as implemented in Python

and Julia, influence the design of artificial

intelligence models?

• How does Julia's multiple dispatch paradigm offer

specific advantages over Python in the development

of AI algorithms?

• To what extent do programming paradigm choices

affect the performance and scalability of artificial

intelligence applications developed in Python and

Julia?

1.3. Research Objective

To analyze the impact of advanced programming paradigms

adopted by Python and Julia on the development of artificial

intelligence applications, with an emphasis on performance,

flexibility, and innovation.

1.4. Specific Objectives

• To assess the influence of object-oriented and

functional paradigms on the design and structuring

of AI models in Python and Julia.

• To compare the contribution of Julia's multiple

dispatch to equivalent mechanisms in Python for the

creation of advanced artificial intelligence

algorithms.

• To analyze the impact of programming paradigms

on the performance, execution speed, and scalability

of artificial intelligence applications developed in

Python and Julia.

1.5. Hypothesis

Advanced programming paradigms, such as functional,

object-oriented, and multiple dispatch, integrated into Python

and Julia, significantly contribute to improving the

performance, flexibility, and innovation capacity of artificial

intelligence applications, with Julia offering a comparative

advantage in computational performance in specific cases.

1.6. Hypotheses

• The adoption of object-oriented and functional

paradigms in Python and Julia promotes a more

modular, flexible, and maintainable design of

artificial intelligence models.

• Multiple dispatch, a feature specific to Julia, offers

superior performance and greater expressiveness for

certain types of AI algorithms compared to the

mechanisms available in Python.

• Programming paradigm choices significantly impact

the overall performance and scalability of artificial

intelligence applications, with Julia particularly

excelling in computationally intensive contexts.

2. SOME THEORIES OF THE

STUDY
2.1. Programming Paradigm Theory

Programming paradigm theory, developed by various

computer science researchers, argues that the choice of a

paradigm strongly influences how problems are

conceptualized, modeled, and solved in programming (Van

Roy, 2020). This theory distinguishes several major

paradigms such as imperative, functional, object-oriented, and

logic programming. In the context of artificial intelligence, the

functional paradigm allows, for example, elegant management

of function composition and data flow processing, while the

object-oriented paradigm facilitates the modeling of complex

systems using classes and objects. Julia, with its multiple

dispatch paradigm, illustrates the emergence of new ways of

organizing code to optimize performance and flexibility

(Bezanson et al., 2017).

2.2. Abstraction and Modularity Theory

Abstraction and modularity are central concepts in software

engineering, positing that organizing code into self-contained,

well-abstracted modules increases software readability,

reusability, and maintainability (Fowler, 2018). In AI, these

principles are essential for developing robust libraries and

structuring complex models. Python, with its modules and

classes, and Julia, with its packages and native support for

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: MALOANI SAIDI Georges © Copyright 2025 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 20

multiple dispatch, each offer advanced mechanisms to

encourage modularity and abstraction, thereby facilitating

innovation in AI applications (Fowler, 2018; Innes et al.,

2018).

2.3. Computational Performance Theory

According to this theory, computational performance depends

not only on algorithms, but also on the ability of the language

and its paradigms to optimally exploit hardware resources

(CPU, GPU, memory) (Edelman et al., 2023). Julia was

designed from the ground up to combine expressiveness and

performance, while Python, historically slower, relies on

external compiled libraries (such as NumPy, TensorFlow) to

overcome its weaknesses. Comparing these two languages in

the field of AI illustrates how the choice of paradigm and

language architecture can impact results in terms of speed and

scalability.

3. METHODOLOGY
3.1. Research Type

This study is part of a qualitative approach with an

exploratory purpose, based exclusively on an in-depth

documentary analysis. The objective is to understand and

analyze how advanced programming paradigms are used in

the Python and Julia languages for artificial intelligence.

3.2. Rationale for the Methodological Choice

Qualitative documentary analysis allows for an in-depth

exploration of concepts, theories, experiences, and practices

reported in the scientific, technical, and professional literature.

This choice is essential in a context where the objective is to

identify trends, advantages, limitations, and perspectives

without direct access to interviews or field observations

(Bowen, 2009).

3.3. Sources and Selection Criteria

The sources used are:

• Recent scientific articles (2017-2024) from indexed

journals (ACM, Springer, IEEE, Nature, SIAM,

etc.),

• Books and specialized publications on advanced

programming, Python, and Julia,

• Technical reports, official guides, documentation,

and blogs from AI experts,

• Comparisons and case studies published online.

The documents are selected according to the following

criteria: relevance to AI, focus on Python or Julia,

contribution to programming paradigms (functional, object-

oriented, multiple dispatch), and scientific or technical

recognition.

3.4. Analysis Method

The analysis follows a thematic approach (Braun & Clarke,

2022), consisting of:

• Reading, annotating, and summarizing each

document,

• Coding relevant excerpts according to the following

axes: paradigms used, advantages, limitations,

impacts on performance, innovations,

• Identifying and synthesizing points of

convergence/divergence between Python and Julia,

• Highlighting current trends, challenges, and

perspectives raised by the literature.

3.5. Methodological Limitations

The lack of primary data collection (interviews, observations)

is a limitation, as the research is based on existing data.

However, the richness and diversity of recent literature allows

for a relevant and contextualized comparative analysis.

4. RESULTS
4.1. Impact of Object-Oriented and Functional

Paradigms on the Structuring of AI Models

The literature review shows that the integration of object-

oriented (OO) and functional paradigms facilitates the

modular and scalable structuring of AI models. In Python, the

object-oriented approach, widely used through classes and

objects, allows for the development of clear, reusable, and

extensible architectures, which facilitates the maintenance of

complex projects (VanderPlas, 2018). Julia, although

supporting OO, is more oriented toward the functional

paradigm, which allows the creation of pure functions and

efficient functional composition. Both languages leverage the

flexibility of these paradigms, although Julia prioritizes

simplicity and performance in function manipulation

(Bezanson et al., 2017).

4.2. Julia's Multiple Dispatch: An Asset for

Algorithmic Flexibility

The literature review highlights that multiple dispatch, the

core of the Julia language, offers remarkable flexibility in

defining functions and extending behaviors based on

argument types. Unlike Python, which primarily uses method

overloading through object orientation, Julia allows automatic

method specialization based on type combinations, thus

optimizing the performance of complex algorithms and

facilitating the addition of new behaviors without modifying

existing code. This feature is widely cited as an advantage for

AI research and rapid prototyping (Bezanson et al., 2017;

Edelman et al., 2023).

4.3. Programming Paradigms and Computational

Performance in AI

The results of the literature comparisons reveal that the choice

of paradigm and language significantly influences

performance. Julia, thanks to its JIT (just-in-time) compilation

model and native type management, offers significantly faster

execution for computationally intensive algorithms than

Python, which often relies on C/C++ extensions to overcome

its inherent slowness (Edelman et al., 2023). Julia's paradigms

(particularly multiple dispatch) allow for better code

optimization, while Python remains favored for its rapid

prototyping and rich ecosystem.

4.4. Trends and Outlook for the Adoption of Python

and Julia in AI

The literature review highlights that Python remains the

language of choice for the majority of AI projects thanks to

the maturity of its libraries, its massive community, and its

ease of learning. However, Julia is gradually gaining

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: MALOANI SAIDI Georges © Copyright 2025 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 21

popularity, particularly in academic research and sectors

requiring high computational performance. Experts anticipate

increasing adoption of Julia for use cases requiring flexibility,

speed, and the ability to prototype innovative models, while

maintaining Python as the educational and industrial standard

(Perkel, 2019; Innes et al., 2018).

5. DISCUSSIONS
The literature review on advanced programming paradigms in

artificial intelligence, with a particular focus on Python and

Julia, reveals contrasting but complementary dynamics

between these two languages. The results largely confirm the

findings established in recent literature, while opening up

interesting perspectives for the evolution of AI practices.

First, it appears that the combination of object-oriented and

functional paradigms, particularly well represented in Python

and Julia, favors the development of modular, maintainable,

and scalable AI models. This observation is consistent with

the analyses of VanderPlas (2018) and Bezanson et al. (2017),

who highlight the ability of these paradigms to improve code

quality and accelerate experimentation in AI projects.

However, the dominance of the object-oriented approach in

Python facilitates integration into large industrial projects,

while Julia's functional flexibility attracts researchers for rapid

prototyping and advanced mathematical manipulation.

Second, the issue of multiple dispatch, Julia's flagship feature,

confirms its superiority for handling complex and

polymorphic functions, offering extensibility and performance

rarely matched in Python (Bezanson et al., 2017; Edelman et

al., 2023). This result is consistent with the literature, which

cites multiple dispatch as one of the main factors for Julia's

adoption in scientific circles and computational artificial

intelligence.

Third, regarding performance and scalability, the literature

and analyzed data converge to affirm that Julia outperforms

Python for intensive computational tasks, thanks to its JIT

compilation and efficient type management. However, Python

maintains a significant lead in prototyping speed, library

availability, and integration with other tools, which still makes

it the preferred choice in many industrial and academic

projects (Innes et al., 2018; Perkel, 2019).

Finally, the current trend shows that despite Python's

dominance in the AI ecosystem, Julia is attracting more and

more researchers and practitioners seeking to overcome the

performance limitations of traditional solutions. The two

languages, far from being direct competitors, tend toward

complementarity: Python for accessibility, rapid

experimentation, and rich community; Julia for performance,

flexibility of scientific code, and the ability to innovate

paradigms.

These results suggest that the choice of language and

paradigm largely depends on the context of use: rapid

prototyping, industrial development, performance

requirements, or advanced research needs. The evolution of

AI practices could move toward hybrid approaches,

integrating the best of both worlds to meet the future

challenges of artificial intelligence.

6. CONCLUSION
The study of advanced programming paradigms applied to

artificial intelligence, with a particular focus on Python and

Julia, highlights the importance of language and paradigm

choice for the design, performance, and evolution of AI

applications. The literature review reveals that Python, thanks

to its intuitive syntax, rich ecosystem, and dominant object-

orientation, has established itself as the de facto standard for

rapid prototyping, industrial development, and AI education.

Julia, on the other hand, draws its strengths from its multiple-

dispatch paradigm, high computational performance, and

scientific orientation, making it a particularly popular

alternative for tasks requiring efficiency and algorithmic

innovation.

The results highlight that the complementarity of functional,

object-oriented, and multiple-dispatch paradigms makes it

possible to address AI problems with greater modularity,

flexibility, and robustness. While Python remains essential for

most applications, Julia is making progress and attracting

more and more researchers, particularly in high-performance

computing or advanced modeling contexts. This dual

observation suggests a future where the integration of multiple

languages and paradigms, depending on the project's needs,

will become the norm to address the growing complexity of

artificial intelligence challenges.

Ultimately, the choice of language and paradigm should not

be viewed as a simple technical criterion, but rather as a

strategic lever for innovation, optimization, and adaptation in

a constantly evolving field. The perspectives opened up by

Python and Julia herald new development practices,

combining accessibility, performance, and creativity in the

field of artificial intelligence.

7. BIBLIOGRAPHY
1. Bezanson, J., Edelman, A., Karpinski, S., & Shah,

V. B. (2017). Julia: A fresh approach to numerical

computing. SIAM Review, 59(1), 65-98.

https://doi.org/10.1137/141000671

2. Bezanson, J., Edelman, A., Karpinski, S., & Shah,

V. B. (2017). Julia: A fresh approach to numerical

computing. SIAM Review, 59(1), 65-98.

https://doi.org/10.1137/141000671

3. Edelman, A., Shah, V.B., Bezanson, J., &

Karpinski, S. (2023). The evolution of Julia: A

language for scientific computing and artificial

intelligence. Communications of the ACM, 66(5),

48-57.

4. Edelman, A., Shah, V.B., Bezanson, J., &

Karpinski, S. (2023). The evolution of Julia: A

language for scientific computing and artificial

intelligence. Communications of the ACM, 66(5),

48-57.

5. Fowler, M. (2018). Refactoring: Improving the

design of existing code (2nd ed.). Addison-Wesley

Professional.

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: MALOANI SAIDI Georges © Copyright 2025 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 22

6. Guo, P., Wang, D., & Xu, X. (2020). A

comprehensive study on Python for artificial

intelligence. Journal of Physics: Conference Series,

1648(3), 032011.

7. Innes, M., Edelman, A., Fischer, K., et al. (2018).

Julia: Flexible and efficient machine learning. arXiv

preprint arXiv:1807.04085.

8. Innes, M., Edelman, A., Fischer, K., et al. (2018).

Julia: Flexible and efficient machine learning. arXiv

preprint arXiv:1807.04085.

9. Millman, K. J., & Aivazis, M. (2011). Python for

scientists and engineers. Computing in Science &

Engineering, 13(2), 9-12.

10. Perkel, J.M. (2019). Julia: Come for the syntax, stay

for the speed. Nature, 572(7771), 141-142.

https://doi.org/10.1038/d41586-019-02310-3

11. Russell, S.J., & Norvig, P. (2021). Artificial

Intelligence: A Modern Approach (4th ed.).

Pearson.

12. Van Roy, P. (2020). Programming paradigms for

dummies: What every programmer should know.

Communications of the ACM, 63(7), 56-65.

https://doi.org/10.1145/3408046

13. VanderPlas, J. (2018). Python Data Science

Handbook: Essential Tools for Working with Data.

O’Reilly Media.

