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Abstract 

This paper derives a local volatility model for an asset whose dynamics follow a jump di usion 

geometric Brownian motion, incorporating reinvested divi- dend yields and proportional 

transaction costs. Building upon the seminal works of Black and Scholes (1973), Merton 

(1976), and the more recent de- velopments by Opondo et al. (2021, 2025), the study extends 

Dupire's local volatility framework to accommodate discontinuities and market frictions in 

asset price behavior. By integrating tools from stochastic calculus, jump pro- cess theory and 

transaction cost modeling, we derive a modi ed Dupire-type volatility equation tailored for 

complex nancial environments. This model enhances the accuracy of derivative pricing and 

risk assessment under more realistic market conditions. 
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1. INTRODUCTION 
The valuation of nancial derivatives fundamentally 

depends on the un- derlying dynamics of asset prices. 

Classical models such as the Black-Scholes framework 

assume continuous price paths and constant volatility [5]. 

How- ever, empirical evidence shows that asset prices 

often exhibit sudden jumps, stochastic volatility, and are in 

uenced by factors such as dividend payments and 

transaction costs, factors not adequately captured by 

standard models. 

Merton extended the geometric Brownian motion (GBM) 

model by incor- porating jump components to address some 

of these limitations [15]. More recently, researchers such as 

Opondo, Oduor, and Odundo developed models that integrate 

reinvested dividends and proportional transaction costs within 

jump di usion processes, thereby enriching the modeling of 

asset dynamics in modern nancial markets [16,17]. 

Local volatility models, introduced independently by Dupire 

and Derman and Kani in the early 1990s, have become 

essential tools in option pricing, enabling the calibration of 

volatility surfaces using market-observed data [10, 11]. 

However, the classical Dupire equation is limited to pure di 

usion processes and does not account for jumps, dividends, or 

market frictions such as transaction costs. 

This study aims to derive a modi ed Dupire-type local 

volatility equa- tion under a Jump Di usion Geometric 

Brownian Motion (JDGBM) frame- work that incorporates 

both reinvested dividends and proportional transac- tion costs. 

The derivation employs tools from stochastic calculus and 

builds on the theoretical foundation provided by earlier works, 

including those of Oduor [18] and Li et al. [23], who 

examined similar features in stochastic environments 

involving jumps and dividends. 

The resulting model enhances the accuracy of volatility 

estimation, deriva- tive pricing, and hedging strategies in 

more realistic nancial settings char- acterized by 

discontinuities and trading frictions. 

2.  Preliminaries 
This study adopts a mathematical modeling framework 

grounded in stochas- tic calculus to derive a local volatility 

model for an asset whose price dynamics follow a Jump Di 

usion Geometric Brownian Motion (JDGBM). The model 

incorporates two key real-world market features: reinvested 

dividend yields and proportional transaction costs. The 

methodology proceeds through the following steps: 

2.1.  Derivation of the price of a jump di usion 

Geometric Brownian motion with the re-invested 

dividend and transaction cost. 
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Considering Yin Li et al.[23] and Opondo [17], a jump di 

usion Geometric Brownian motion with the dividend yielding 

and transaction cost equation is given by; 

 

dSt = St(µ − γ − τ − λk)dt + StσdWt + Stdqt,      (1) 

Where γ is the dividend yielding proportion and τ is the 

transaction cost pro- portion. By considering the 

reinvested dividend proportion and transaction cost, the 

resulting equation from 1 is given by; 

dSt = St(µ + γ − τ − λk)dt + StσdWt + Stdqt,   (2)  

Equation 2 can be solved using Ito's lemma given by; 

 
From equation 3, we want to  nd dY where Y is de ned 

as ln(St). First we obtain the partial derivatives involved. 

 
Pluging the values ito's lemma in equation 3 

 

3.  Derivation of Fokker-Planck equation 

The Fokker-Planck equation describes the time evolution of 

the probabil- ity density function of the position of a particle 

under the in uence of forces and random perturbations. 

Step 1: Start with the Stochastic Di erential Equation Consider 

the SDE for a stochastic process X(t): 

dX(t) = µ(X, t) dt + σ(X, t) dW (t) (10) 

where: 

   µ(X, t) is the drift term, 

   σ(X, t) is the di usion term, 

  W (t) is a Wiener process (Brownian motion). 

Step 2: Write the Corresponding Fokker-Planck Equation 

The Fokker-Planck equation describes the time evolution of 

the probability density function P (x, t) of the stochastic 

variable X(t). 

 

This equation can be derived using the It calculus and the 

concept of the probability density function. 

Step 3: Derivation Using the Probability Density Function 

Probability Density Function Evolution 

Let P (x, t) be the probability density function of the 

stochastic variable X(t). The probability that X(t) lies between 

x and x + dx at time t is P (x, t) dx. Master Equation Approach 

Consider the change in P (x, t) over an in nitesimal time 

interval dt: 

 

 
Transition Probability Expansion 

Assume the transition probability can be expanded in a 

Taylor series around 

x′: 

 
First and Second Moments 

The rst and second moments of the increments are given 

by: 

 
Integrate and Simplify 

Substitute these moments into the master equation and 

integrate by parts: 

 

4.  Dupire's Volatility equation 
The local volatility model was introduced by Dupire[11] and 

Derman[10]. This has become one of the most extensively 

used models in pricing of deriva- tives across asset classes. 

The Dupire equation enables us to determine the volatility 

function in a local volatility model from quoted call and put 

options in the market. The price dynamics in the local 

volatility model under the risk neutral measure are given by; 

 
Where r(t) is the risk-free interest rate, q(t) is a continuous 

dividend yield at time t, σ(S, t) is the volatility and Z(t) is the 
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Wienner process. The Black-Scholes partial di erential for any 

contingent claim f (S, t) is given as; 

 
Where r(t) is the risk-free interest rate in the market. The t 

dependence of r(t) is the `term structure' of interest rates. 

Suppose that a European call option at time t, priced at a 

discounted ex- pectation where C(T, t) denotes the 

discounting factor of a risk-zero coupon bond, then it can be 

shown that; 

 
where ϕ(S(T ), S(t)) is the probability density function of 

conditional on S(t). If we di erentiate equation 21 twice with 

respect to K, we obtain; 

 
These relations 22 are known as the Breedon-Litzenberger 

formulas. 

By using Kolmogorov's forward equation for transitional 

probability density function ϕ(S(T ), S(t)) the Fokker-Plank 

equation on 

 
we obtain the density of the random variable S(T ) 

 
where the function ϕ(S(T ), S(t)) is the density of random 

variable S(T ) and time T conditional on the initial value S(t) 

and the model 23. If this density function is known and di 

erentiable with respect to time at maturity T , the drift rate and 

the volatility terms in the related stochastic process are those 

that solve equation 24. On the other hand if the drift rate and 

volatility terms of the the stochastic process are known, the 

solution to the partial di erential equation 24 is the density 

function. It can be observed that the density function in 

equation 22 is expressed in terms of the strike price K. 

Therefore if di erentiation is taken with respect to K, with drift 

and volatility functions evaluated at K, equation 24 can be re-

written regarding h(S, t) as a function of strike price as; 

 
Using equation 22 and substituting ϕ(K) in the rst term of 

equation 25 we obtain; 

 
Di erentiating the rst term of equation 26 with respect to T 

using the chain rule and then expanding we get; 

 
Integrating equation 27 once, multiplying by C(T, t) and 

substituting for 

ϕ(K) we have; 

 
where a(T ) is a constant of integration. Integrating 28 with 

respect to K we obtain; 

 
where b(T ) is a constant of integration that relates to second 

integration. When we re-arrange equation 29 and simplify we 

have; 

 

 

 
This gives the price of a European option expressed as a 

function of T and K when t and S are xed. To get the volatility 

function we re-arrange equation 31 as 

 
Equation 33 de nes the value of volatility of an option at time 

T and the strike price K when dividend is paid out. It is called 

Dupire's volatility equation. 

5.  Results 
This section presents the results obtained from applying the 

jump di u- sion geometric Brownian motion model with 

reinvested dividends and trans- action costs for volatility 

estimation. The model's extensions introduce mar- ket 

frictions and discontinuities that signi cantly in uence the 

behavior of asset price dynamics. The estimated volatility re 

ects more realistic market conditions, showing that traditional 

models may underestimate risk in the presence of these 

additional factors. These results provide a re ned perspec- tive 

for pricing derivatives and managing risk in markets exposed 

to abrupt shifts and trading frictions. 
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5.1.  Derivation of Dupire volatility equation with the 

re-invested dividend yielding asset and 

Transaction cost. 

Using the spirit of Dupire, we derive a volatility equation of 

the asset price that follows a jump di usion Geometric 

Brownian motion with re-invested dividends and transaction 

cost. 

dSt = (µ + γ − τ − λk)Stdt + σStdWt + Stdqt,     (34) 

where µ is the growth rate, σ is the volatility, λ is the rate at 

which the jumps happen, k is the average jump size measured 

as a proportional increase in asset price qt is the poisson 

process with intensity of λ [17]. The aim is to show that there 

is a unique volatility function σ(S, t). 

Dupire equation needs to be extended to incorporate re-

inested dividend, transaction cost and the jump component. If 

we apply the black-Scholes Merton PDE for any claim of 

asset value f (S, t), we have 

 
where r(t) is the risk-free interest rate in the market since we 

are dealing with price derivatives. If we consider a European 

call option the process of  nding a fair option value of f (S, t), 

will depend on asset price S(t) and time t. Therefore the 

function f (S, t) can be written for the value of the contract 

with boundary condition 

f (S, t) = max(S(T ) − K, 0)     (36) 

 

 
Di erentiating 37 twice with respect to K we get; 

 
Applying the Fokker-Plank equation and using Kolmogorov's 

foward equa- tion on 34 we obtain 

 
Using the approach of Dupire[11] taking f as a function of 

strike price K in equation 39, with di erentiation taken with 

respect to drift and volatil- ity function evaluated at K 

(because the density function in equation 38 is expressed in 

terms of K. Equation 39 can be re-written as; 

 

Using equation 38 and substituting for φ(K) in the rst term of 

equation 40 we have; 

 
Using chain rule to di erentiate the rst term of 41 with respect 

to T and expand we get 

 
substituting for φ(K), multiplying by P (t, T ) then integrating 

once w.r.t K 

we have 

 
where α(T ) is the constant of integration. integrating again 

w.r.t K we get 

 

 

 
; K > 0 This is the price of a European option expressed as a 

function of T and K (For xed T and K). Rearranging equation 

45, we get; 

 
Finding the square root on both sides of equation 46 we 

obtain; 

 
Equation 47 is the volatility model with; 
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Given that 
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