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Abstract 

Transportation is a critical aspect of logistics and supply chain management. It involves the 

optimal distribution of goods from multiple sources to various destinations. The goal is to 

minimize transportation costs while meeting supply and demand constraints. All optimization 

algorithms developed so far focus on these challenges and their pros and cons. This article 

compares and classifies the algorithms according to their principles, merits, and demerits. 

It explores exact and heuristic algorithms, outlining each approach and its appropriateness for 

transportation applications. It delves into different concepts involved in the simplex method, 

which is a key algorithm in linear programming, degenerate and specialized methods of simplex 

such as the transportation method, and network simplest method for transportation problems. 

Some of the heuristic algorithms proposed in the paper include classical heuristics such as the 

North-West Corner Method, Least Cost Method, and Vogel's Approximation Method and a 

collection of metaheuristics including Genetic Algorithms, Simulated Annealing, Tabu Search, 

Ant Colony Optimization, and Particle Swarm Optimization. As mentioned, many heuristic 

approaches produce satisfactory solutions in a reasonable time with no optimality guarantees. 

They are often the only solution technique for large, intractable, complex systems, models, or 

problem statement types that exact methods cannot tackle. 

Keywords: Transportation problems, optimization algorithms, linear programming, heuristics, 

metaheuristics, artificial intelligence, machine learning. 

1. Introduction 
Transportation problems are classic optimization problems 

ubiquitous across various fields, such as logistics, supply 

chain management, manufacturing, and distribution. They are 

centered on the optimal way to move things from many 

origins (factories, stockrooms) to numerous destinations 

(retail outlets, buyers). The goal is to minimize the total cost 

of transporting all the items. The distance, fuel economy, 

vehicle restrictions, and delivery timing determine the price. 

A rich body of research laid the foundation for transportation 

problems in the 1940s, including significant work such as 

Hitchcock (1941) and Koopmans (1949), and the field 

developed as a natural extension of that work. Their work laid 

the foundations for mathematical modeling, which allowed 

problems to be expressed as mathematical models and 

solutions to be derived. Much research has been conducted on 

developing and improving optimization algorithms for 

transportation problems. There are two fundamental types of 

classifiers: accurate algorithms and heuristic algorithms. 

Exact Algorithms will yield the most optimal solution to the 

transportation problem. These methods mathematically search 

the entire solution space and record the cheapest way to get 

the stuff from A to B. However, these methods can suffer 

from steep time complexity as the problem becomes large. 

This can render them impractical in practical environments 

where numerous sources, destinations, and types of goods are 

available. In such cases, the time to optimally solve problems 

with exact approaches can be limited. 

The heuristics algorithm brings in a practical solution. The 

SAT solver based on backtracking is a practical 

implementation that does not find optimal solutions but is 

satisfactory within time. These algorithms navigate the 

solution space efficiently using either heuristics or search 

methodologies. It is unlikely that amending one heuristic will 

lead to perfection, though it will usually come close to the 

optimal solution. 

This paper reviews all the optimization algorithms employed 

so far for solving transportation problems, including the new 

issue. It analyzes exact and heuristic methods, distinguishing 
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the principles on which they rest, their theoretical realization, 

shortcomings, and strengths. It addresses some new trends in 

transportation optimization,  especially with artificial 

intelligence and machine learning methods. Such 

advancements will pave the way for next-gen logistics 

systems that would be seamless, adaptive, and intelligent 

enough to handle the intricate logistics challenges of the real-

life world by simplifying processes. 

2.  Mathematical Formulation 
It is possible to mathematically define a broad transportation 

issue as a linear programming (LP) problem. Consider 'm' 

sources and 'n' destinations. The following are notations used. 

Si: Supply capacity at source/origin i (i = 1, 2,....., m) 

Dj: Demand required at destination j (j = 1, 2,... , n) 

CIJ: The cost to transport one unit of goods from 

source/origin i to destination j 

xij: Amount of goods shipped from source i to destination j 

The goal is to minimize the total transportation cost, which 

can be written as: 

Minimize Z = ∑(i=1)^m ∑(j=1)^n {c_ij x_ij } 

The following restrictions: 

Supply constraints: ∑_(j=1)^n〖x_ij ≤s_i 〗, i=1,2...,m 

Demand constraints: ∑_(i=1)^m〖x_ij ≥d_j 〗, j= 1,2,...,n 

All terms are non-negative, xij ≥ 0 where i, S, j ≤ size of N. 

The transportation problem is balanced if the total supply 

equals the total demand (∑i=1mSi=∑j=1nDj). If demand does 

not equal total supply, the problem is unbalanced. To balance 

it, a dummy source or destination with zero cost in each cell is 

introduced for stability, followed by the optimization 

algorithm. 

3. Exact Algorithms 
When these algorithms are used, they will always obtain an 

optimal solution to a transportation problem. However,  as 

the problem size increases, they become computationally 

intractable and are not used for large-scale instances. Popular 

classes of exact algorithms include: 

3.1. The Simplex Method 

The transport problems are solved by simplex hinges, one of 

the essential linear programming methods. The adequacy of 

the solution is then evaluated by the algorithm, which begins 

methodically searching for a better solution from the optimal 

corner cell of the problem space and stepping along the 

contour of the feasible region until an optimal solution has 

been determined. However, the algorithm's time complexity 

increases exponentially concerning the problem size (Dantzig, 

1963), although the simplex method is broadly general (i.e., it 

guarantees the best solution and correct answer). 

3.2. The above explanation comes from 

Transportation Simplex Method 

The transport simplex method can be viewed as a special case 

of the simplex method for transport-type problems. It uses the 

transportation problem's specialized structure to help reach a 

lower computational complexity. Starting from an initial basic 

feasible solution, the algorithm successively reviews the 

transport plan to determine whether and by how much it can 

be enhanced (Murty, 1983). 

3.3. The Network Simplex Method 

Other specific variables, like the network simplex method, 

begin with the network configuration of transportation 

challenges. It treats the problem as a network and then uses 

ideas from graph theory to find the most optimal solution. For 

transportation problems, network simplex outperforms 

standard simplex one-dimensional tableau (Ahuja, Magnanti 

& Orlin, 1993). 

4. Heuristic Algorithms 
Heuristic algorithms aim to quickly find reasonable answers 

to optimization challenges, even for large-scale problems. 

They do not guarantee a perfect solution. However, they tend 

to be reasonably close to optimal. Heuristic algorithms often 

deliver for complex routing problems when optimal solutions 

may be computationally impossible. 

4.1. Classical Heuristics 

Many heuristic algorithms (including classical ones) have 

been proposed to solve transportation problems. These 

algorithms can be straightforward to implement, wherein 

reasonable solutions can often be found relatively quickly. 

Here are some classical heuristics that will likely come to 

your mind: 

 Northwest Corner: In a transportation problem, an 

initial basic feasible solution is determined using 

several methods. It begins by placing the maximum 

number of items into the cell in the top left-hand 

corner of the transportation table (the northwest 

corner). The primal resource's availability and the 

destination's solicitation restrain this distribution. 

After the allocation, the process proceeds to the next 

open cell to the right or below until the demand 

limit or supply constraint is satisfied. This process 

of allocating a part of supply and demand continues 

until the entire supply and demand is met (Taha, 

2007). This approach is relatively straightforward to 

implement but frequently fails to consider costs, 

resulting in a potentially inefficient solution where 

transportation costs are not minimized. 

 Least Cost Method: In the least cost method, we 

arrange the maximum possible units to reduce cost 

by assigning them to the cells with the least 

transportation cost. This process recursively occurs 

until the next minimum cost cell fills its supply 

capacity and completely satisfies demand 

requirements. This is known as a route or mode of 

transfer (Winston, 2004), which reduces 

transportation costs this way. However, it does not 

return the optimal minimum-cost solution and 

usually yields satisfactory answers. 

 Vogel's Approximation Method (VAM): Vogel's 

Approximation Method (VAM) is a superior 

heuristic compared to the northwest corner and least 
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cost approaches. The purpose is to decrease 

transportation prices by analyzing how much time 

an individual could have saved if the most suitable 

way was chosen instead of the way of 

transportation. This has a single calculation as the 

first step in computing the penalty costs of the pans 

or the columns in the transportation table. These 

penalties are the differences between the minimum 

costs in each row and column, representing how 

much costs would rise if the best solution is 

disregarded. Next, since the one with the highest 

penalty cost cuts your cost more, the amount is the 

one with the highest penalty cost. This step is 

performed iteratively; allocations are made where 

the remaining costs are most considerable until all 

demand and supply constraints are met (Reinfeld & 

Vogel, 1958).  

 Highest Demand/ Supply Method: 

This method assumes that goods overstocked or in 

demand are given high priority for transportation. 

Allocating goods or services in the cell 

corresponding to the highest demand/supply 

row/column is given priority, and optimum units are 

allocated. The row or column with the fewest units 

is crossed out, and the process continues until every 

unit flows into its corresponding cell. The following 

viable optimal scenario procedure is identical. This 

method is better than the northwest corner method, 

has the least cost, and is close to Vogel’s 

approximation method. 

 

Table 1: Comparision between different heuristic methods 

in transportation 

Heuristic Description 
Advantag

es 

Limitation

s 

North-West 

Corner 

Method 

It starts at the 

top-left corner 

and allocates 

as much as 

possible to 

each cell. 

Simple and 

easy to 

implement. 

Often 

leads to 

suboptimal 

solutions. 

Least Cost 

Method 

Allocates as 

much as 

possible to the 

cell with the 

lowest cost. 

It is 

relatively 

fast and 

often 

provides 

better 

solutions 

than the 

North-

West 

Corner 

method. 

It may not 

always 

lead to the 

best 

solution. 

Vogel's 

Approximatio

n Method 

(VAM) 

Calculates 

penalty costs 

and allocates 

based on the 

highest 

Generally, 

it provides 

better 

solutions 

than the 

It is more 

complex to 

implement 

than other 

classical 

penalty. North-

West 

Corner and 

Least Cost 

methods. 

heuristics. 

Highest 

Demand/suppl

y  method 

Allocate as 

much as 

possible to the 

cell with the 

lowest cost 

corresponding 

to the 

row/column 

containing the 

highest 

demand/suppl

y. 

It is 

relatively 

fast and 

often 

provides 

better 

solutions 

than the 

North-

West 

corner and 

the least 

cost 

method. 

It may not 

always 

lead to the 

best 

solution. 

4.2. Metaheuristics 

Metaheuristics are higher-level heuristic algorithms that direct 

the search process to improve solution space exploration. 

Natural phenomena or biological processes inspire many. For 

transportation optimization, there are many metaheuristic 

algorithms available. Examples include: 

 Genetic Algorithms(GA): Genetic Algorithms 

(GAs) are one of the traditional optimization 

algorithms influenced by natural evolution. Here is 

a genetic algorithm in Python. Genetic algorithms 

are based on the concept of natural evolution. They 

begin with a group of potential solutions and use 

genetic operators like selection, crossover, and 

mutation to generate better solutions over time. 

Crossover combines these surviving candidates and 

creates "child" candidate solutions. It is somewhat 

akin to the survival of the fittest approach in that the 

more promising candidates are more likely to 

survive and be combined. Genetic Algorithms 

(GAs) are inspired by natural evolution and mimic 

this process by providing broad coverage of solution 

space and generating near-optimal results for 

complex problems like transportation logistics 

(Holland, 1975). 

 SA-Simulated Annealing (SA): Simulated 

Annealing (SA) draws on annealing in metallurgy, 

where a material is heated and cooled down. The 

material is then cooled slowly under controlled 

conditions to allow atoms to settle into a low-energy 

state, which minimizes defects and ultimately 

improves the quality of the material. Similarly, in 

optimization, SA employs the temperature to 

smoothen the search. Simulated annealing starts 

with a high temperature, allowing it to explore 

many possible solutions. However, as time goes on, 

the temperature decreases, so the algorithm centers 

around promising regions of overlaps and returns 

the best overall solution. This gives the ability to 
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jump out from local optima and approach a globally 

optimum or near-to-optimum solution. 

 TS (Tabu Search): Tabu Search (TS) avoids 

exploring the solution space by using a memory 

structure, i.e., ―tabu list.‖ This list saves the moves 

or solutions tested recently (used by the algorithm). 

The algorithm will not return to these moves or 

solutions for several iterations. · By allowing the TS 

to make exploratory jumps to areas of the solution 

space with variable payoff, this approach increases 

the likely discovery of better solutions (Glover, 

1985, pp. 533-549). 

 Ant Colony Optimization (ACO): The Tabu 

Search (TS) algorithm uses a memory structure 

termed a ―tabu list‖ to direct the search. It 

maintains a list of explored solutions or moves to 

prevent the algorithm from revisiting the exact 

solution for many iterations. This prevents the 

search from cycling back to the exact solutions that 

were already explored and helps TS escape local 

optima, therefore exploring the solution space even 

better (Glover, 1985, pp. 533-549). 

 Particle Swarm Optimization (PSO): Based on 

the behavior of birds flocking or fish schooling. 

PSO is a population-based search algorithm. At 

swarm initialization, each particle updates its 

position using two essential positions. The PSO, 

being a population-based optimization algorithm, 

features individuals, called particles in this case, 

who can communicate with each other to share 

information (Kennedy & Eberhart, 1995, 1942–

1948). Description: Due to the simplicity of this 

algorithm, APSO has been widely adopted for a 

significant number of optimization problems, and 

this tool can solve complex problems. 

Table 2 

 

Metaheuristic Description Advantages Limitations 

Genetic Algorithms (GA) 
Mimic the process 

of natural selection. 

Can handle complex problems 

and escape local optima. 

Parameter tuning can 

be challenging. 

Simulated Annealing (SA) 

Simulates the 

annealing process in 

metallurgy. 

Can escape local optima. 
Cooling schedule can 

affect performance. 

Tabu Search (TS) 

It uses a memory 

structure to guide 

the search. 

It can prevent cycling and 

explore the solution space 

effectively. 

Tabu list size and 

tenure can affect 

performance. 

Ant Colony Optimization 

(ACO) 

Inspired by the 

foraging behavior 

of ants. 

Can find reasonable solutions 

for combinatorial optimization 

problems. 

Parameter tuning can 

be challenging. 

Particle Swarm 

Optimization (PSO) 

Simulates the social 

behavior of bird 

flocking. 

It is relatively simple to 

implement and can handle 

continuous optimization 

problems. 

i8t can get trapped in 

local optima. 

5. Applications of Optimization 

Algorithms in Transportation Problems 
Optimization algorithms have been used in diverse sets of 

transportation problems, such as: 

 Vehicle Routing Problems (VRP): The Vehicle 

Routing Problem (VRP) determines optimal vehicle 

delivery routes to many customers. This is a 

complex optimization problem that considers the 

total distance or time traveled and different 

constraints that need to be considered. These 

constraints consist of the limited carrying capacity 

of the vehicle, the time windows during which each 

customer must be serviced, and predefined priorities 

for deliveries, ensuring the service is both timely 

and effective (Toth & Vigo, 2002). The VRP has 

numerous applications in logistics, waste collection, 

and supply chain management, focusing on 

increasing efficiency and minimizing costs. 

 Traveling Salesperson Problem (TSP): The 

Traveling Salesperson Problem (TSP) is one of the 

oldest and most studied optimization problems, 
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dating back to the 1930s; it is the foundation of 

logistics and operations research. It is concerned 

with calculating the chance of minimum path 

visiting N cities precisely one time and returning to 

the starting town with minimum path. The issue has 

consequences across logistics, planning, and 

manufacturing, where optimal routing is considered. 

These are computationally intractable problems 

(NP-hard), so that number takes at least exponential 

time to find an exact optimal solution (Applegate, 

Bixby, Chvátal, & Cook, 2006) despite being 

relatively simple to formulate. 

 Location-Routing Problems (LRP): A location-

routing problem (LRP) is a multifaceted logistics 

challenge that optimizes facility placement and 

vehicle route sequentially. Comprehensive, 

including the optimization of facility locations, 

including warehouses and distribution centers, as 

well as the reduction of transportation expenses 

while fulfilling client requirements. It can consider 

the capacity of facilities, customer demand,  

vehicular constraints, and even the road network to 

recommend an optimal solution. LRP is well suited 

for location analyses and routing processes to 

operate more efficiently in distribution networks 

(Nagy & Salhi, 2007, pp. 649-672). 

 Logistics Optimization: Transportation Network 

Design: Transportation network design is a 

fundamental component of logistics optimization, 

dealing with the strategic location of the hubs and 

terminals within the network. That is, it is (i) 

finding the best area of such facilities (e.g., finding 

the best location of warehouses so that the transport 

flows are (scrutinized that) the transport flows are 

efficient. The networks are working smoothly, etc.). 

In addition to determining the locations of the hubs 

and terminals, the design process also encompasses 

the routes connecting these nodes, emphasizing 

minimizing overall transportation costs while 

satisfying service level needs and improving the 

system's resiliency and responsiveness as demand 

evolves (Crainic, 2000, pp. 272-288). 

 Traffic Flow Optimization: This ML use case 

focuses on improving the efficiency and capacity of 

urban roads and highways. This process involves 

optimizing traffic flow across the transportation 

network, minimizes congestion on our streets, 

reduces travel time, and improves the overall 

efficiency of traffic moving through the system. 

These techniques include traffic signal coordination, 

ramp metering, and variable speed limits to reduce 

bottlenecks (Sheffi, 1985). These efforts in 

optimizing the transportation system help to reduce 

fuel consumption, lower emissions, and promote 

more sustainable transport. 

 Supply Chain Optimization: A more holistic 

approach to managing the flow of goods, 

information, and finances, from the sourcing of raw 

materials and production processes to distribution 

networks and final product delivery. This holistic 

approach focuses on cutting costs at every step and 

parameter in the process, minimizing waste, 

ensuring optimum usage of resources, and 

ultimately delivering value to customers by 

satisfying them with the on-demand delivery of 

goods. (Simchi-Levi, Kaminsky, & Simchi-Levi, 

2008). 

6. Emerging Trends in Transportation 

Optimization 
Transportation optimization powered by data science — TSP, 

VRP models, and algorithms. Recently, we partnered with a 

leading logistics provider on an exciting project and wanted to 

share our insights. [Related:  Emerging trends in 

transportation optimization] 

 Artificial Intelligence (AI) and Machine 

Learning (ML): The increasing complexity of 

transportation problems driven by globalization and 

e-commerce will require more advanced solutions. 

That is where artificial intelligence (AI) and 

machine learning (ML) come into play. This 

dictates using previous data to train models to learn 

said patterns and anticipate events, thus enabling 

systems to adjust to changing conditions in real-

time, among them traffic congestion, weather-

related delays, and demand variation. By processing 

massive amounts of data, ML and AI help make 

rational decisions in logistics and transportation 

while identifying the best possible solutions through 

real-time analysis. This leads to enhanced 

efficiency, cost savings, and greater customer 

satisfaction in general. 

 Big Data: The rise of big datasets (e.g.,  GPS data, 

sensor data, social media data) is revolutionizing 

transport systems as they open up significant 

opportunities to optimize transport systems. These 

massive datasets can manipulate complex patterns 

and detect trends across transportation networks. 

Transportation demand predictions can be more 

accurate using advanced analytics, enabling on-time 

and timely routing adjustments for real-time 

optimization, making transportation systems more 

effective and responsive (Chen, 2014). By helping 

transportation planners and operators to be 

appropriate, make informed decisions, optimize 

resource allocation, and improve the overall 

efficacy of the transport network through historical 

and real-time data. 

 Internet of Things: The Internet of Things (IoT) 

revolutionizes transportation systems by integrating 

various devices and vehicles, generating vast 

amounts of real-time data about traffic conditions, 

vehicle locations, and environmental factors. The 

Internet of Things (IoT) facilitates real-time 

monitoring and directs the collected data to several 

domains, including load and transportation route 
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optimization, risk assessment, fleet tracking, etc. 

IoT-generated data allows transportation systems to 

readily adapt to evolving conditions by tailoring 

route selection depending on various routes and 

overall performance (Li et al., 2018). 

 Data Synthesis Through AI: AI-powered data 

synthesis is not new. Using optimization algorithms, 

they can intelligently plan routes, optimize fleet 

management, and dynamically optimize and control 

traffic flow. Fagnant and Kockelman (2015) further 

mention that the optimization potential is not 

limited to these aspects and can improve different 

facets such as travel time, fuel consumption, traffic 

efficiency, etc. These advancements will 

revolutionize the future of transportation and 

logistics 

 Sustainable Mobility: As environmental 

consciousness grows,  there is a concerted effort to 

design transportation systems to minimize 

emissions and advocate for environmentally 

responsible logistics practices. It includes using 

alternative fuels, like biofuels and electricity, and 

advanced routing strategies to reduce fuel use and 

its environmental impact. In addition, there is an 

increasing focus on increasing multi-modal 

transportation, which combines multiple modes of 

transport, such as rail, road, and waterways, to 

provide more economical and environmentally 

friendly transport options (Lin & Kernighan, 1973). 

This push for sustainability aligns with a more 

significant movement towards reducing the carbon 

footprint of logistics and a vision for a better 

tomorrow. 

7. Conclusion 
Transportation problems and optimization algorithms 

optimization algorithms are vital to solving transportation 

problems. This paper presented a detailed overview of these 

algorithms organized according to their principles, 

applications, advantages, and limitations. Additionally, we 

have looked at new trends in transportation optimization, 

including AI, ML, big data analytics, IoT, and autonomous 

vehicles in shaping and controlling transportation systems. 

Transportation problems will become more complex, and 

complex optimization algorithms will be needed. This paper 

should address more robust, optimized algorithms for real-

time implementation while considering real-world scenarios, 

including dynamic environments, uncertainties, and multi-

objective optimization. In conclusion, combining AI and ML 

techniques with big data can play a vital role in overcoming 

these challenges to build more innovative and sustainable 

transportation systems. 
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