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Abstract 

This study aimed to examine the effects of agricultural activities on soil physico-chemical, SOC, TN 

stocks and CO2 emissions as a function of cultivation duration. The study was carried out in southeastern 

Chad, focusing on three localities near the city of Am-Timan: Darasna (North-East), Madina (South) and 

Goz-Mabile (West). These sites have been intensively cultivated for flood recession sorghum production 

under glyphosate use for 25 35 and 50 years, respectively. Six soil profiles were collected and a total of 

144 samples were obrained-36 per site. Soil samples were collected randomly from each plot at 0-10 cm, 

10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm and 50-60 cm in triplicate per experimental unit. The results 

indicated that soil pH in the study area was slightly alkaline and influenced by cultivation duration, with 

the highest pH observed after 25 years of cultivation. Additionally, soil bulk density and texture were 

affected by the duration of agricultural practices. The highest bulk density was recorded after 25 years of 

cultivation, while lower bulk densities were observed after 35 and 50 years of farming practices, 

highlighting the impact of cultivation time on soil compaction. A decline in SOC and TN stocks was 

evident with more than 25 years of cultivation, along with an increase in CO2 emissions, particularly in 

the topsoil (0-20 cm) and subsurface (20-40 cm). Reducing cultivation duration may enhance soil fertility 

by improving soil physicochemical, as well as soil organic matter, ultimately contributing to increase 

crop yields and climate change mitigation. 

Keywords: Soil organic carbon, Total nitrogen, Carbon dioxide emission, Agricultural land, Chad, 

Vertisol  

1. Introduction  
Soil organic carbon (SOC) and total nitrogen (TN) are crucial 

components of the agricultural ecosystems due to their 

significant contributions to soil quality, fertility and crop 

productivity (Olorunfemi et al., 2020). Additionally, SOC 

plays a pivotal role in global climate mitigation because it’s 

potential to function as a carbon dioxide (CO2) sink (Chen et 

al., 2009; Martin et al., 2016). Globally, SOC stocks are 

approximately two and three times greater than carbon stored 

in the vegetation and the atmosphere respectively (Lal, 2004; 

Friedlingstein et al., 2020). However, due to its susceptibility 

to land use and or land cover changes, SOC can act as either a 

source or a sink of CO2, depending on the management 

practices employed (Chen et al., 2009; Zanatta and Salton, 

2010; Olorunfemi et al., 2020). According to several studies, 

land cover changes and unsustainable agricultural practices 

contribute significantly to the loss of SOC and TN (Chen et 

al., 2009; Don et al., 2011; Veldkamp et al., 2020; Winkler et 

al., 2021). Winkler et al. (2021) reported that, on global scale, 

the conversion of natural ecosystems to agricultural land has 

resulted in a decline of 116 Gt of SOC in the top 2 meters of 

soil, with significant losses observed in the tropical regions. 

Similarly, the conversion of primary forest to cropland is 
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responsible for 25-30% reduction in of SOC (Don et al., 

2011).  

Studies conducted in various regions of Africa revealed low 

levels of SOC and TN in agricultural soils (Girmay et al., 

2008; Girmay and Singh, 2013, Gelaw and Singh, 2014; Bal 

et al., 2023; Okolo et al., 2023). Furthermore, land use 

changes are the second largest source of CO2 emissions 

(Lozano-García and Parras-Alcántara, 2013), while 

agricultural practices account for approximately 20% of 

global greenhouse gas emissions (IPCC, 2007; Van der Werf 

et al., 2009). Canadell et al. (2009) estimated that land use 

changes in Sub-Sahara Africa alone contribute to emissions 

approximately 0.24 Pg C per year carbon.  

The growing interest in understanding the effects on 

agricultural activities on SOC, TN and CO2 emissions is 

driven by evidence that even small changes in SOC and TN  

stocks can result in significant CO2 emissions, exacerbating 

climate change (Li et al., 2013; Albaladejo et al., 2013). 

However, agricultural soils also possess substantial potential 

for carbon sequestration on a global scale (Mcguire et al. 

2009).  

Assessing the effects of agricultural activities on soil physical 

and chemical properties, SOC, TN and CO2 emissions is 

therefore essential for improving soil fertility and mitigating 

greenhouse gases (GHG) emissions (Lal, 2004). Despite the 

abundance of global research on this topic, relatively few 

studies have evaluated the impacts of agriculture on organic 

carbon stocks, total nitrogen stocks and CO2 emissions in 

Africa, particularly in the Sudano-Sahelian region. 

Land pressure, including soil overexploitation of soil, 

unsuitable cultivation practices and the disappearance of long-

term fallow are profoundly altering the environment of Chad 

(Naitormbaide et al., 2011; Clément, 2019; Mouaromba et al., 

2021; Bahouro et al., 2023). In Chad, the increasing 

population, driven in part by the massive influx of refugees 

combined with the reconversion of fishermen to agriculture 

due to declining water level in Lake Chad, has intensified 

pressure on the region's soils (Mouaromba et al., 2021). 

Currently, Chad is undergoing significant agricultural 

expansion, with intensive agricultural zones observed 

throughout country. As a result, soils in Chad are subjected to 

intensive exploitation, often with up to three harvests per year, 

which contributes to their degradation and the loss of fertility. 

Mouaromba et al. (2021) and Mikela et al. (2022) conducted 

field studies to assess the impact of intensive agriculture on 

soil organic matter (SOM). However, there is limited 

information on SOC stocks (Jones et al., 2013; Adoum et al., 

2020). Adoum et al. (2020) reported SOC stocks ranging from 

4.65 and 72.52 Mg C ha-1 in the topsoil ( 0-30 cm), while, 

Jones et al. (2013) estimated SOC stocks between 10-90 Mg 

C ha-1 at a depth of 1m. Despite the intensification of 

agricultural activities, there remains a lack of comprehensive 

data on the effects of agricultural practices on soil 

physicochemical properties, SOC and TN stocks and CO2 

emissions.  

The objectives of this study are: (i) to assess the impact of 

intensive agricultural practices on soil physicochemical 

properties across four sites, considering the duration of 

cultivation, (ii) to quantify the distribution of SOC and TN 

stocks and CO2 emissions across these sites over time and (iii) 

evaluate the rate of change in SOC soil, TN and CO2 emission 

as a function of cultivation duration. We hypothesized that (i) 

that the duration of agricultural activities significantly 

influences soil physicochemical properties, as well as and 

carbon-nitrogen dynamics, in Sudano-Sahelian context; (ii) 

prolonged cultivation leads to a measurable reduction in SOC 

and TN stocks due to increased soil compaction and 

degradation of organic matter; and (iii): sites with shorter 

cultivation histories retain higher soil fertility and carbon 

sequestration potential, owing to less intensive land use 

practices. 

Our study is the first field study investigation conducted at 

different time intervals across country to assess the changes in 

SOC, TN stocks and CO2 emissions over an extended period 

(0-50 years) following the conversion of natural land cover to 

agricultural land-use systems. 

2. Material and methods 
2.1 Study area and sampling 

The study was carried out in southeast of Chad, located 

between latitudes and  10°44'56.9'' N and 11°21'3454'' N, and 

longitudes 19°46'5908'' E and 20°14'19.5''E, from November 

2022 to December 2023. Three localities of the city of Am-

Timan were selected: Darasna (Northeast), Goz-Mabile 

(West) and Madina (South) (Figure 1). These sites have been 

intensively cultivated for flood-recession sorghum production 

under glyphosate application for 25; 35 and 50 years, 

respectively. Additionally, control site was identified in the 

Wachoun region (Center), where natural vegetation 

comprising weeds nearly 2 m tall and scattered. 

 
Figure 1 : Location of sampling area 

The study area falls under Sahelo-Sudanese (So) climate zone, 

as defined by Auberville (1982). Thus climate is characterized 

by a short rainy season lasting 3 to 4 months, peaking in 

August, followed by a prolonged dry season of 5 to 8 months. 

The mean annual rainfall is approximately 938.8 mm (Zagalo 

et al., 2017). The P/ETP aridity index ranges between 0.09 

and 0.2, refelecting an arid to semi-arid environment highly 

sensitive to climatic variability (Olivry, 1996). 

The study sites fall within two distinct vegetation zones: the 

Sudanian and Sahelian zones. The Sudanian zone is 
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characterized by open forests dominated by Combretaceae 

and legumes species, while the Sahelian vegetation is 

compriseted sparse shrublands and wooded savannas. 

Dominant trees species in the Sudanian zone include Acacia 

sieberiana, Acacia polyacantha, Anogeissus leiocarpus, 

Combretum nigricans, Combretum Glutinosum and 

Terminalia species. In constrast, the Sahelian zone features 

species such as Acacia. nilotica, Balanites aegyptiaca, 

Anogeissus leiocarpus, Ziziphus mauritiania andCombretum 

glutinosum (Binot, 2005).  

Soil samples were randomly collected from each experimental 

plot at 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm and 

50-60 cm within triplicates per depth per experimental unit. A 

total of six soil profiles described (Figure 2), resulting in 

collection of 36 samples per site and a total of 144 samples 

across all sites. 

 

Figure 2:Different soil profiles sampled in the study sites 

at Madina (left) and Goz-Mabilé (right) 

2.2 Soil physical and chemical analysis 

The analyses were carried out at UMR 242 iEES Paris Centre 

IRD, located in Bondy, (Île-de-France, France). Bulk density 

(Bd) was dmeasured by the cylinder method. Disturbed 

samples were utilized to determine particle-size distribution 

through dispersion and sedimentation, employing the pipette 

method. Dispersion was achieved with 1 M NaOH solution 

and the samples were and shaken for 16 hours. Soil pH was 

determined in a 1:2.5 soiltowater suspension using pH meter 

with a glass electrode (Sparks et al., 2020). Soil organic 

carbon and total nitrogen  were quantified using an elemental 

CHNS analyser (Euro EA Elemental Analyser vector, USA) 

and Isotope Mass Spectrometer (EA-IRMS), respectively, 

following the methods outlined by Nelson and Sommers 

(1996; Sparks et al., 2020). Isotopes δ13C were determined 

using an isotope-ratio mass spectrometer (EA-IRMS). 

2.3 X-ray diffraction (XRD) 

The DRX was conducted at the Laboratory Pole of 

Experimentation and Analysis of Tropical Soils and 

Sediments at the iEES in Paris. Powder samples were side-

loaded to minimize preferred orientation and scanned 

continuously in the air-dried state. The mineralogical 

composition of the clay fraction (< 2 μm)  was analyzed using 

oriented powder samples, which were  scanned continuously 

from 2 to40° 2θ at a scanning rate of 1.2°/min. Thermal 

treatments included heating to 550°C in the air-dried state, 

followed by exposure to ethylene glycol vapor for 24 h at 60 

°C. Raw diffraction data were collected and analyzed using a 

Brucker D8-Advance diffractometer equipped with copper   

Kα radiation (λ = 1.5418 Å). Rapid screening of the primary 

minerals in the bulk fraction was performed following the 

classification system of Cook et al. (1975) and reference data 

from the PDF files provided by Brown and Brindley (1980).  

2.4 Soil organic carbon and total nitrogen stock, 

equivalent carbon dioxide  

SOC stocks and TN stocks were calculated for the 10-20 cm, 

20-30 cm, 30-40 cm, 40-50 cm and 50-60 cm soil layers using 

the following equations: 

                 ∑           
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Where SOC stock and TN are expressed in Mg ha−1, Bd 

represents the soil bulk density in Mg m-3; SOC and TN are 

expressed in percentage and h denotes soil depth in cm. The 

calculation account for for gravel content, assuming that these 

particles have a negligible SOC concentration. 

To assess the impact of land use on the organic carbon stock 

under flood-recession sorghum cultivation, the variation in 

stocks (Mg C ha-1year-1) was calculated as the difference 

between the carbon stocks of the alternative practice and 

control, using the following equations: 

                 (      
       )
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Where Stocktn represents SOC or TN stocks under the 

alternative practice, Stockto: is SOC or TN stocks under 

control and tn denotes the duration of cultivation. 

To convert carbon to CO₂-equivalent (CO₂eq), the organic 

carbon stock is multiplied by a factor of 3.67, as proposed by 

Kauffman and Donato (2012) and Hamilton and Casey 

(2016), using the following equation: 

      (     )                   (    )  

2.5 Statistical analyses  

All statistical analyses, including descriptive statistics, 

analysis of variance (ANOVA and Pearson's correlation 

coefficients were performed using R Project software (version 

4.2.0). Correlation analysis was conducted to evaluate 

relationships between soil indicators, and statistical tests were 

considered significant at the 0.05 level. 

3. Results 
3.1 Soil physical properties variability across 

different sites 

Error! Reference source not found. presents the soil 

physicochemical characteristics of the soil measured across 

the six profiles. According to FAO (1999) classification, the 

studied soils are classified as Vertisols. Soils with strongly 

aggregated angular blocks were observed in all soil profiles. 
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The mean Bd did not differ significantly (p > 0.05) across the 

soil layers (0-20 cm, 20-40 and 30-60 cm). However, Bd was 

significantly higher (p < 0.05) in 25-years cropping (Darasna) 

compared to the control, 35 years (Madina) and 50 years 

(Goz-Mabile) at all depths (0–20 cm, 20-40 cm and 40-60 

cm). Across all sites, an increase of Bd with depth was 

observed, except in Madina (Error! Reference source not 

found.).  

Clay content was higher in 0-20 and 20-40 cm soil layers in 

25 years cultivated soil compared to the Control. At 40-60 cm, 

the highest clay content was observed in 35 years of farming 

practices (72.3 %) than in 25 years (69.3 %) 50 years (63.2) of 

cultivation and the Control (54.5 %). Across all sites, of clay 

content generally increased with depth, except in 50 years 

agricultural soil (Error! Reference source not found.).  

In all soil depths, silt content was significantly higher (p < 

0.05) in the Control compared to 25 years, 35 years and 50 

years farming practices. Sand content followed the same trend 

as silt, being higher in the Control than 25 years, 35 years and 

50 years of cultivation (Error! Reference source not found.). 

An increase in sand content with depth was observed in the 

Control and 50 years of cultivation r, whereas a decrease with 

depth was noted 25 years and 35 years of cultivation (Error! 

Reference source not found.). 

Table 1 : Soil physico-chemical parameters, soil organic carbon, total nitrogen stocks and carbon dioxide equivalent 

corresponding to different sites 

 Physical properties  Chemical properties Stocks  

Sites 

Dept

h 

(cm) 

Bd 

(g.cm

-3) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Textur

e 
pH 

 

SOC 

(%) 

 

TN 

(‰) 

 

C/N 

SOCS 

(Mg 

C.ha-

1) 

TNS 

(Mg 

N.ha-

1) 

CO2eq 

(Mg 

CO2.ha
-1) 

 

Control 

0-20 

1.19 ± 

0.06a

b 

49.67 

± 

14.38

a 

32.45 

± 

8.81a 

17.88 

± 

10.56

a 

Clayed 

6.85 ± 

0.28a

b 

1.69 ± 

0.7ab 

1.44 

± 

0.41

a 

14.4 ± 

2.1ab 

20.12 

± 8.5a 

17.4

7 ± 

4.91

a 

64.39 ± 

27.2a 

20-40 
1.26 ± 

0.1ab 

51.2 ± 

13.02

a 

30.52 

± 

4.55a

b 

18.28 

± 

11.02

a 

Clayed 

6.8 ± 

0.35b

c 

1.73 ± 

0.6ab 

1.12 

± 

0.31

a 

14.63 ± 

2.15ac 

21.85 

± 7.2a 

14.3

3 ± 

4.63

a 

69.93 ± 

23.03a 

40-60 

1.41 ± 

0.04a

c 

54.49 

± 

6.56a 

25.97 

± 

6.86a

c 

19.54 

± 

9.11a 

Clayed 

6.65 ± 

0.14b

c 

2.53 ± 

0.62a 

1.28 

± 

0.22

a 

16.66 ± 

3.74a 

35.65 

± 

8.31b 

18 ± 

3.16

a 

114.07 

± 

26.61b 

25 years 

(Darasna

) 

0-20 
1.55 ± 

0.06c 

66.78 

± 

8.77a 

19.41 

± 

6.43b

c 

13.81 

± 

5.36a 

Clayed 
7.23 ± 

0.25b 

1.45 ± 

0.41b 

1.07 

± 

0.25

a 

13.30 ± 

0.99bc

d 

22.61 

± 

6.84a 

16.7

1 ± 

4.05

a 

72.36 ± 

21.9a 

20-40 
1.58 ± 

0.03c 

68.9 ± 

7.99a 

18.09 

± 

7.85c 

13.01 

± 

4.49a 

Clayed 
7.21 ± 

0.2b 

1.60 ± 

0.25a

b 

1.12 

± 

0.25

a 

13.96 ± 

1.27ad 

25.34 

± 

4.25a

b 

17.6

4 ± 

3.9a 

81.10 ± 

13.61a

b 

40-60 
1.58 ± 

0.07c 

69.33 

± 

8.47a 

18.89 

± 

6.26b

c 

11.77 

± 

5.38a 

Clayed 
7.22 ± 

0.14b 

1.44 ± 

0.27b 

1.09 

± 

0.34

a 

14.09 ± 

1.24ad 

22.73 

± 

4.53a 

17.2

3 ± 

5.06

a 

72.75 ± 

14.5a 

35 years 

(Madina) 

0-20 
1.07 ± 

0.09b 

62.72 

± 

28.21

a 

17.24 

± 

6.49c 

20.04 

± 

33.85

a 

Clayed 
6.19 ± 

0.53c 

1.59 ± 

0.91a

b 

1.56 

± 

0.92

a 

10.74 ± 

0.38d 

17.58 

± 

10.55

a 

20.7

1 ± 

7.19

a 

56.25 ± 

33.75a 

20-40 
1.08 ± 

0.01b 

69.6 ± 

7.32a 

22.57 

± 

5.07a

7.83 ± 

3.06a 
Clayed 

6.22 ± 

0.49a

c 

1.78 ± 

0.34a

b 

1.63 

± 

0.52

11.10 ± 

0.79d 

19.24 

± 

3.75a 

17.6

3 ± 

5.6a 

61.58 ± 

12a 
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c a 

40-60 
1.05 ± 

0.02b 

72.31 

± 

2.78a 

16.97 

± 

4.48c 

10.72 

± 

4.46a 

Clayed 
6.25 ± 

0.4ac 

1.75 ± 

0.34a

b 

1.52 

± 

0.32

a 

11.12 ± 

0.98bd 

18.48 

± 3.7a 

15.9

7 ± 

3.53

a 

59.13 ± 

11.85a 

50 years 

(Goz-

Mabile) 

0-20 
1.03 ± 

0.17b 

64.49 

± 

7.12a 

22.55 

± 

5.09a

c 

12.97 

± 

4.71a 

Clayed 

6.76 ± 

0.31b

c 

1.45 ± 

0.41b 

1.10 

± 

0.27

a 

13.3 ± 

0.99bc

d 

15.42 

± 

6.29a 

11.6

9 ± 

4.15

a 

49.34 ± 

20.11a 

20-40 
1.13 ± 

0.16b 

66.22 

± 

4.69a 

20.67 

± 

6.67a

c 

13.11 

± 

4.26a 

Clayed 

6.76 ± 

0.23b

c 

1.60 ± 

0.25a

b 

1.12 

± 

0.25

a 

13.96 ± 

1.27ad 

17.89 

± 

2.75a 

12.6 

± 

3.41

a 

57.26 ± 

8.81a 

40-60 

1.19 ± 

0.37a

b 

63.17 

± 

9.51a 

21.71 

± 

4.25a

c 

15.12 

± 

7.95a 

Clayed 

6.83 ± 

0.21a

b 

1.44 ± 

0.27b 

1.09 

± 

0.34

a 

14.09 ± 

1.24ad 

16.97 

± 6.4a 

12.4

2 ± 

4.17

a 

54.30 ± 

20.49a 

3.3 Mineralogy and composition of the clay fraction 

(< 2 μm) 

XRD analyses were conducted on the clay fractions of soils 

from Control and cultivated sites at depths of 0-10 cm, 20-30 

and50-60 cm, respectively. The mineralogical analysis 

revealed the presence of smectite, illite, kaolinite and chlorite 

in across soils profiles. Specifically, the clay fractions 

contained smectite, illite (in Control and 35 years of 

cultivation) as well as kaolinite, chlorite (in 25 and 50 years of 

farming practices) at 0-10 cm, 20-30 cm and 50-60 cm, 

respectively (Error! Reference source not found.). 

 

 

Figure 3: XRD clay fraction of different soil in Control (a), 

Madina (b-c) and Goz-Mabile (d) 

3.3 Soil chemical properties variability across 

different sites  

Overall, the soil pH in the study area was within the slightly 

alkaline range. Across all the soil layers, the pH was 

significantly higher (p < 0.05) in 25 years of cultivation, 

followed the order of Control > 50 years > 35 years of 

cultivation. 

In all the soil layers, the SOC content ranged from 1.44 % to 

2.53%. The SOC content was significantly higher (p < 0.05) 

in the Control and 35 years of cultivation compared to 50 

years and 25 years, respectively (Error! Reference source 

not found.). The TN content ranged from 1.07% to 1.63%. 

Among all soil layers, the highest TN content was observed in 

35 years of cultivation, followed by the Control site, with 

lower values recorded in 25 and 50 years of agricultural soils. 

In the Control site, a decrease in TN content was observed 

between 0-20 cm and 20-40 depths, followed by an increase at 

40-60 cm. Conversely, in the cultivated sites, the opposite 

trend was observed, with an increase in TN content from 0-20 

cm to 20-40 cm, followed by a decrease at 40-60 cm (

Table 1). Regarding the C/N ratio, the values ranged from 

11.1 to 14.1. Across all soil layers; the C/N ratio was 

significantly lower (p < 0.05) in 35 years of cultivation and 

similar in the others sites. 

3.4 Soil organic carbon, total nitrogen stocks and 

carbon dioxide equivalent variability across 

different sites 

On average, SOC stocks ranged from15.42 Mg C ha-1 to 22.61 

Mg C ha-1 at 0-20 cm soil depth 17.89 Mg C ha-1 to25.34 Mg 

C ha-1 at 20-40 cm soil depth, and 16.97 Mg C ha-1 to 35.65 

Mg C ha-1 at 40-60 cm soil depth (

Table 1). In topsoil layer (0-20 cm) and subsurface r (20-40 

cm), SOC stocks followed the order 25 years > Control > 35 

years > 50 years of cultivation. In the subsoil (40-60cm), the 

highest SOC stocks were recorded in the Control, followed by 

25 years, 35 years and 50 years of framing practices, although 

there were no significant difference (p > 0.05) in SOC stocks 

among the sites (
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Table 1, Figure 4a). SOC stocks increased in 25 years of 

cultivation by 2.49 Mg C ha-1 (11.01%) and 3.49 Mg C ha-1 

(13.77%). Among sites where SOC stocks decreased, the 

greatest  reduction  were recorded in 50 years and 35 years of 

cultivation, with declines of 23.35% and 18.12% in the 

topsoil, 52.23% and 12.62%) in subsurface 11.94% and 

48.26% in subsoil respectively. 

 

 

Figure 4: Dynamic of soil organic carbon stocks (a: SOCS), 

Total Nitrogen stocks (b: TNS) and dioxide carbon equivalent 

(c: CO2eq)) along the soil profile for difference time period 

from all sites: Darasna (25 years of cultivation), Madina (35 

years of cultivation) and Goz-Mabilé (50 years of cultivation) 

On average, TN stocks ranged 11.69 Mg N ha-1 to 20.71 Mg N 

ha-1 at 0-20 cm soil depth, 12.6 Mg N ha-1 to17.64 Mg N ha-1 

at 20-40 cm soil depth, and 12.42Mg N ha-1 to 18.00 Mg 40-

60 cm soil depth (

Table 1). In topsoil and subsurface, the highest TN stocks 

were recorded in 35 years of cultivation followed by the 

Control, 25 years and  50 years of cultivation. In subsoil, the 

highest TN stock was observed in the Control (18.00 Mg N 

ha-1), followed by 25 years (17.23 Mg N ha-1), 35 years (15.97 

Mg N ha-1) and 50 years (12.42 Mg N ha-1) of cultivation (

Table 1, Figure 4b). Regarding TN stocks, the greatest 

decreases were observed in 50 years of cropping, with 

reductions of 33.08% (11.69  Mg N ha-1) in the topsoil, 

12.07% (12.6 Mg N ha-1) in the subsurface and 31.00% (12.42 

Mg N ha-1) in the subsoil. 

Agricultural activities contributed to emissions ranging from 

49.34MgCO2 to 81.1 MgCO2 at 0-20 cm soil depth, 57.26 to 

81.10 MgCO2 at 20-40 cm soil depth, and 54.30 MgCO2 to 

114.07 MgCO2 at 40-60 cm soil depth. 25 years of cropping 

exhibited CO₂-equivalent (CO2eq) emissions compared to the 

Control, 35years and 50 years of cultivation in both topsoil (0-

20 cm) and subsurface (20-40 cm) (

Table 1, Figure 4c).  

Figure 5highlights the spatial variation in SOC stocks (Figure 

5a and Figure 5d), TN stocks (Figure 5b and Figure 5e) and 

CO2eq (Figure 5c and Figure 5f). Significant differences in 

these parameters were observed across the study areas at 0-20 

cm and 40-60 cm soil depths. 

 

Figure 5 : Map of soil organic carbon, total nitrogen stocks 

and carbon dioxide equivalent in the 0-20 (a-c) and 40-60 cm 

(d-e) soil depth. 

3.5 Changes in SOC and TN stocks losses  

The mean estimated SOC loss (∆SOC) was2.49 Mg C ha-1 yr-

1, 3.49 Mg C ha-1 yr-1 and -12.91 Mg C ha-1 yr-1 at 0-20 cm 

soil depth, -2.54Mg C ha-1 yr-1, -2.61Mg C ha-1 yr-1 and -

17.17Mg C ha-1 at 20-40 cm soil depth yr-1, -4.7Mg C ha-1 yr-

1, -3.96 Mg C ha-1 yr-1 and -18.68Mg C ha-1 yr-1 at 40-60 cm 

depth. The average SOC loss was significantly higher (p < 

0.05) in 0-40 cm soil layer compared to for the 0–20 cm 

(Figure 6a).  

Regarding ∆TNS loss, intensive agricultural accounted for an 

average loss of -0.77 Mg N ha-1 yr-1, 3.31 Mg N ha-1 yr-1, -

0.77 Mg N ha-1 yr-1 in 25 years of cropping (0–20 cm, 20–40 

cm and 40–60 cm, respectively) -0.21 Mg N ha-1 yr-1, 3.30Mg 

C ha-1 yr-1 and -2.04 Mg N ha-1 yr-1 in 35 years of cultivation, 

-5.78 Mg C ha-1 yr-1, -1.73 Mg N ha-1 yr-1 and -5.58 Mg N ha-1 

yr-1 in 50 years of cultivation (Figure 6b).  

 

Figure 6: Variation of SOC; TN stocks and CO2eq gain 

and/or loss for the period 50 years for different sites 

Agricultural activities resulted in emission of 9.02 CO2eq yr-1, 

12.64 Mg CO2eq yr-1 and -46.75 CO2eq yr-1 in 25 years of 

cultivation (0–20 cm, 20–40 cm, and 40–60 cm, respectively), 

-16.59 CO2eq yr-1, -17.53 CO2eq yr-1 and -69.91  Mg CO2eq 
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yr-1 in 35 years of cultivation, and -23.5 Mg CO2eq yr-1, -

21.85 Mg CO2eq yr-1 and -74.75 Mg CO2eq yr-1 in 50 years of 

cropping (Figure 6c). The highest ∆CO2eq emissions were 

recorded in 50 years and 35 years of farming practice, 

respectively with values of 49.34 Mg CO2eq (23.37%), 57.26  

Mg CO2eq (18.11%) and 54.30 Mg CO2eq (52.39%) in the 

topsoil, 56.25 Mg CO2eq (12.64%) and 61.58 Mg CO2eq 

(11.94%) in subsurface, 59.13 Mg CO2eq (48.16%) in the 

subsoil. 

4. Discussion 
4.1 Effect of land use on soil physical and chemical 

properties 

Land cover changes, such as conversion of grazing lands to 

intensively cultivated cropland significantly degrade physical 

and chemical soil properties (Admasu et al., 2014, Tellen and 

Yerima, 2018, Aredehey et al., 2019, Bufebo et al., 2020, 

Molla et al., 2021). Cultivation duration has been shown to 

decrease Bd, indicating the decline of soil structural 

aggregation (Bufebo et al., 2020, Molla et al., 2022). These 

findings alignwith several others studies (Tellen and Yerima, 

2018, Elias, 2019; Bufebo et al., 2020, Molla et al., 2022). 

For instance, Tellen and Yerima (2018) reported similar 

results northwest region of Cameroon.  

Analysis of particle size revealed significant differences 

among the study sites, indicating that soil texture was affected 

by intensive agricultural activities. This result corroborates 

findings from several prior studies (Molla and Yalew, 2018, 

Molla et al., 2020, Buruso et al., 2023). Relatively higher clay 

content was observed in cropland compared to the Control 

site, likely due to the disturbance of soil aggregates during 

agricultural activities, which promote to a selective removal 

of clay particles via erosion (Molla and Yalew, 2018). Similar 

results were reported by Agoume and Birang (2009) in 

Cameroon. The observed increase in the clay content with soil 

depth may be explained by the translocation of clay particles 

from the surface to deeper layers (Warra et al., 2015, Molla 

and Yalew, 2018, Gebeyaw, 2019). Comparable trends have 

been observed in other studies in Ethiopia (Admasu et al., 

2014; Gebeyaw, 2019; Tufa et al., 2019), which indicated that 

prolonged agricultural activities accelerate (sedimentary 

processes, such as erosion, weathering, eluviation and 

deposition, ultimately affecting soil particle size distribution. 

Soil pH was also influenced by intensive agricultural 

activities, with the lowest pH values recorded at sites 

cultivated for extended periods (35 years and 50 years). These 

findings align with previous studies by (Negasa et al., 2017; 

Alemayehu and Sheleme, 2013, Gebeyaw, 2019), which 

documented reduced pH in cultivated soils in Central and 

Southern Ethiopia. Similarly, Amusan et al. (2006) reported 

significantly lower soil pH under continuously cultivated 

areas in Nigeria. The higher pH values observed at the subsoil 

layers  could be attributed to the leaching of basic cations and 

soil erosion caused by  tillage (Kumar et al. 2012, Gebeyaw, 

2019, Molla et al., 2021).  

The SOC was affected by intensive land use, with lowest SOC 

values observed after 35 years and 50 years of cultivation. 

Conversely, no significant impact on SOC was detected after 

25 years of cultivation, likely due to the shorter duration of 

intensive land use. his supports findings from earlier studies 

(Kidanemariam et al., 2012, Elias, 2016; Tellen and Yerima, 

2018, Bufebo et al., 2020, Buruso et al., 2023; Chukwuebuka 

et al., 2023; Okolo et al., 2023), which reported a decline in 

SOC content under continuous cultivation. Our results are in 

line with studies with studies from south-eastern Nigeria 

(Okolo et al., 2023; Okebalama et al., 2017; Nwite et al., 

2018), which noted higher SOC content in clay-textured soils. 

Consequently, our hypothesis of reduced SOC and TN stocks 

following prolonged cultivation was confirmed, with most 

losses occurring in the 0–40 cm topsoil layer. Similar 

conclusions were drawn by Girmay et al. (2008) and Okolo et 

al. (2023) in their respective studies in northern Ethopian.  

Interestingly, Darasna exhibited the highest SOC and TN 

stocks, suggesting that 25 years of framing practices may have 

led to improvements in these stocks due to the site’s higher 

clay content. Numerous studies have demonstrated the role of 

clay in enhancing SOC storage (Hassink, 1997; Arrouays et 

al., 2006; Dexter et al., 2008; Schmidt et al. 2011; Kleber et 

al., 2021; Schweizer et al., 2021; Johannes et al., 2023). SOC 

stabilization in the clay fractions is largely attributed to the 

adsorption mechanisms provided by clay surfaces (Kaiser and 

Guggenberger, 2003; Curtin et al., 2015; Matus, 2021). In this 

study, smectite was identified as the dominant clay mineral 

across sites (Figure 3), and its surface area showed positive 

correlation between SOC and clay content (Mayer, 2004, 

Wagai et al., 2015). However, the significant negative 

correlations between clay content and both SOC (r = -0.66, p 

= 0.018) and the C/N ratio (r = -0.58, p = 0.047) indicate that 

clay does not contribute to the stabilization of SOM but may 

instead facilitate its mineralization (Table 2). These results 

align with the findings of Tsozué et al. (2020), who reported 

similar trends and contrast with previous findings 

(Hassink, 1997; Kaiser and Guggenberger, 2003; Mayer, 

2004; Arrouays et al., 2006; Dexter et al., 2008; Rabot et al., 

2024). This suggest that cultivation time is the primary factor 

controlling SOC, TNS and CO2eq.  

Table 2 : Pearson correlation matrix between soil 

physicochemical properties. Bolt values are significant at p 

< 0.05 

  Bd Clay Silt Sand pH SOC TN C/N 

Clay 0.05        

Silt -0.1 -

0.89 

      

Sand 0.05 -0.8 0.45      

pH 0.81 -

0.05 

0.07 0     

SOC -

0.25 

-

0.66 

0.55 0.59 -

0.41 

   

TN -

0.55 

0.03 0 -0.05 -

0.84 

0.54   

C/N 0.52 - 0.54 0.44 0.61 0.22 -  
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0.58 0.63 

 

 

 

 

 

 

 

 

 

 

The impact of intensive agriculture on TN stocks was evident 

in soils cultivated s for 25 and 50 years of cropping, years 

respectively, but no significant changes were observed at the 

35 years of cultivation. TN stocks increase increased with soil 

depth in the 25 and 50 years sites, a trend contrary to previous 

studies (Gebeyaw, 2019, Bakhshanded et al., 2019, Soleimani 

et al., 2019, Bufebo et al., 2021, Buruso et al., 2023). Subsoil 

was contained higher clay content and clay minerals such as 

smectite, which likely limited the degradation of organic 

matter and enhanced the soil’nutrient and carbon storage 

capacities (Buruso et al., 2023).  

4.2 Effect of land use on SOC, TN stocks and CO2 

emissions 

The lowest SOC and TN were observed after 35 and 50 years 

of cultivation, while the highest SOC and TN stocks was 

recorded 25 years of cultivation These findings are consistent 

with previous studies (Abagaz et al., 2016; Biazin et al., 

2018). Prolonged cultivatio increases the exposure of 

physically preserved particulate organic matter to rapid 

oxidation, leading to significant reductions in SOC and TN 

(Post and Kwon 2000; Lal 2002; Demessie et al., 2013; Li et 

al., 2013). Similar results reported by Gelaw et al. (2014) in a 

semi-arid watershed in Northern Ethiopia, highlighting the 

adverse effects of long-term cultivation on soil quality. 

Significant losses of SOC and TN were observed after 35 and 

50 years of cultivation. These rates of loss align with those 

reported by Don et al. (2011) and Aticho (2013), who found 

SOC and TN losses of 25% and 33-37%, respectively, for 

tropical regions and in southwestern Ethiopia. However, our 

results are lower than the highest rate of loss reported by 

Assefa et al. (2017),in northwest of Ethiopia, where the 

conversion of forest to croplands reduced C stocks by 70% 

over30 years of cultivation. These losses of soil C and N in 

intensively cultivated croplands can be attributed to topsoil 

erosion (Assefa et al., 2017), the removal of organic materials 

from fields (Abegaz et al., 2016), accelerated decomposition 

rates (Deng et al., 2014; Abegaz et al., 2020), and increased 

weathering and microbial activity (Smith, 2008; Lal, 2005). 

The loss of SOC and TN stocks was most pronounced in 

topsoil and subsurface, which is in agreement with findings 

from several studies (Don et al., 2011; Assad et al., 2013; 

Demessie et al., 2013; Lozano-Garcia and Parras-Alcantara, 

2014; Yu et al., 2014; Biazin et al., 2018). The highest SOC 

and TN were recorded in subsoil layer across the study sites. 

These findings are supported by numerous works (Yimer et 

al., 2007; Assad et al., 2013; Demessie et al., 2013; Braz et 

al., 2013; Biazin et al., 2018) and can be attributed to  the 

rapid turnover of long and fine roots (Asaye and Zewdie, 

2013; Biazin et al., 2018). This result is aligns with findings 

of Biazin et al. (2018), who demonstrated that the effects of 

agricultural practices are more pronounced in the upper soil 

layers. Additionally, the restoration of the carbon and nitrogen 

in the topsoil layer through the cultivation of vegetables may 

explain these dynamics (Roa-Fuentes et al., 2015). 

Agricultural soils possess a significant capacity to act as sinks 

CO2 and other greenhouse gases (GHGs) (Mirzaei et al., 

2022; Mohammed et al., 2022; Lal, 2022). In recent years, 

research on GHG mitigation and adaptation in agricultural 

soils has garnered considerable attention (Guo and Liu, 2022; 

Lal, 2022). Compared to intensively managed croplands, 

statistically significantCO2 accumulation was observed in 

soils cultivated for 25 years of cultivation and subsequently 

left uncultivated. These findings were in agreement with 

several works (Krisnawat, 2015; Shiraishi et al., 2023; Wang 

2024). In this study, the mean rate of CO2 emissions was 

significantly higher than the range (0.37 Gt CO2 to 0.54 Gt 

CO2) reported by Wang (2024). Wang (2024) attributed this 

increase in carbon emissions to land use changes in Brazil. 

Similarly, Shiraishi et al. (2023) estimated CO2 emissions of 

0.13 Pg CO2.year−1 in 2016 in Borneo. Our results suggest 

that elevated CO2 emissions are associated with prolonged 

intensive agricultural. The study also revealed a decline in 

CO2 emissions with soil depth, corroborating findings by 

Okolo et al. (2023), who reported decrease similar trend in 

croplands of semi-arid regions in northern Ethiopia. 

Furthermore, our results indicated that soils cultivated for 25 

years of cultivation functioned as CO2 sinks, whereas subsoil 

acted as source of CO2 emissions, suggesting topsoil 

contributed to CO2 sequestration. 

4.3 Implications for land use policy and sustainable 

agriculture in Sudano-Sahelian zone 

Land degradation, low water productivity and high rainfall 

variability- often associated with climate change- are among 

the primary challenges faced by many countries of Sub-

Saharan Africa (Karanja Nganga et al., 2016; Woldearegay et 

al., 2018; Gora, 2021). Araya (2011) reported that extensive 

cultivation has led to decline in soil productivity. To address 

these challenges, numerous scientific investigations and 

cultural practices have been developed, refined and 

recommended to sustain agriculture production in these 

regions (Golla, 2021). Sustainable agricultural practices, 

including no-tillage, manure application agroforestry, 

mulching, cover cropping and crop rotation, can be 

implemented to improve soil fertility and enhance carbon 

sequestration.  

5. Conclusions 
The present study was conducted to evaluate the effect of 

cultivation duration on SOC, TN stocks and CO2 emissions. 

Our findings demonstrate that cultivation duration influences 

soil physico-chemical properties, SOC, TN stocks and CO2 

emissions. The most pronounced impacts were observed after 
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35 and 50 years of cultivation. In contrast, sites cultivated for 

25 years of cultivation appeared less sensitive to land use 

changes, exhibiting higher SOC and TN stocks in the topsoil 

layers and functioning as CO2 sinks. This result suggests that 

in the Sudano-Sahelian zone, minimally exploited sites can 

serve as potential carbon sinks, contributing to climate change 

mitigation.  

Nevertheless, further research is required to better understand 

the factors that promote carbon accumulation at these sites. 
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