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Abstract  

In this study we investigated the enhanced recovery of Agbabu bitumen in Ondo State, 

southwestern Nigeria, via a thermal injection approach via machine learning architecture 

using ensemble model 3-stage SK learn pipeline with Gradient Boosting and SHAP. This 

thermal  method involves the use of a furnace coupled with rheometry to measure the flow 

properties of the bitumen. The flow properties measured were the plastic viscosity (PV) and 

yield point (YP) of the bitumen in its natural and thermal states (true boiling point of 977 
0
F). 

The plastic viscosity of the bitumen at the thermal state was 0.1433 cP, and it decreases as 

temperature increases, contrary to when it was in its natural state at no thermal condition. 

The highest plastic viscosity at an index of 3.894 cP was recorded in the natural state of the 

bitumen. This shows that, in its natural state, the bitumen has the highest resistance to flow or 

deformation under shear stress or gravitational force in boreholes, whereas it has the lowest 

resistance to flow or deformation at the true boiling point. Agbabu bitumen will flow easily or 

deform under shear stress or gravitational force in boreholes at thermal state.  While 

measuring the yield point, it was observed that the minimum stress required to initiate flow in 

the heavy oil at no thermal state is 38.25 lb/100 ft²
 
at a shear stress of 525 MPa.s and a shear 

rate of 125 s⁻¹. At the thermal state, the minimum stress required to start the fluid flow is 

224.57 lb/100 ft²
 
at a shear stress of 225 MPa.s and a shear rate of 5 s⁻¹. The knowledge of the 

thermal properties of Agbabu bitumen is important to predict its behavior under heat or load 

and the safe temperature for enhancing its recovery. 

Keywords: Heavy oil, Stress, Thermal, Plastic Viscosity and True Boiling temperature. 

INTRODUCTION 
Bitumen is extracted from tar sands, which are also a mixture 

of clay, sand, and  water  (Ebii, 2015). Although this sum is 

substantial and almost equal to its current conventional oil 

reserves, it is far less than the 2.4 trillion barrels of 

conventional oil held by Canada and the 2.1 trillion barrels 

held by Venezuela (Milos, 2015). It is subsequently processed 

into oil . Nigeria’s reserves of bitumen and extra heavy oil are 

estimated to be 38 billion barrels (Milos, 2015). 

Although it may seem efficient, maintaining an annular flow 

through a pipeline is typically challenging because of flow 

geometry, which frequently results in the formation of a 

slower- moving fluid (slug) and the subsequent blending of 

the divided phase (Hu, 2008).  

Due to its ease of use and convenience, dilution with solvent 

has attracted a lot of attention from researchers (Gateau et al, 

2004). 

Additionally, the mix of the oil and aqueous phase determines 

which surfactant is optimal for lowering the surface tension of 

the liquid in which it dissolves. Nevertheless, surfactants are 

genuinely costly substances, and considering economic 

factors may serve as a constraint on the quantity of surfactant 

(Hasanvand, 2015). Currently, core annular flow is used to 

enhance unconventional oil flow through pipes. This method 

typically ignores the viscosity of the oil but instead creates a 

thin layer of water on the inside surface of the pipe wall to 

reduce friction and promote oil flow (Martinenz, 2011). 
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High density (low API gravity) and high viscosity are 

characteristics of bitumen in its natural state. This is used to 

compare the densities of crude oils, as well as high levels of 

heavy metals, nitrogen, oxygen, and sulfur (Attanasi, 2010).  

Heat transfer is the reason why thermal oil recovery 

techniques reduce the liquid propane viscosity of heavy oils. 

These thermal recovery techniques include insitu combustion, 

electric heating, steam aided gravity drainage (SAGD), and 

steam flooding (continuous or cyclic) (Bottler et al., 1981). 

Concentration has shifted to very viscous heavy oil resources 

and the extension of the depletion of conventional oil 

reservoirs (Hasanvand, 2015).  

Currently, a number of ideas have been put up to encourage 

the transit and movement of oil through the lowering of 

viscosity. They can be broadly divided into four categories: i) 

Diluting ii) Annular Core Flow iii) Emulsification. Iv) 

Martinez (2011) .  

Because it reduces oil viscosity quickly, preheating crude oil 

is thought to be the most appealing and treasured method used 

(Henaut, 2003). Despite its apparent effectiveness, heat or 

thermal treatment has certain drawbacks, such as the 

requirement for additional field facilities and equipment and 

the usual expensive heating process, which rather exacerbates 

financial constraints, particularly in extremely cold climates 

(Saniiere, 2004). 

More than 85% of today's petroleum resources are found in un

conventional oil reservoirs, but asignificant portion of these ar

estill in the development stage (Mohammad Poor, 2015). Thic

k oils are conceptualized as having a density (OAPI) gravity o

f less than 20 and a viscosity of more than 102 cp (Meyer, 198

7). Furthermore, unconventional oil with an API gravity of les

s than 22.5is taken into consideration by the global heavy oil c

onference (Travidan et al, 2006).  

Although oil sand, oil shale, and tar sand are common byprod

ucts of heavy petroleum resources, they are considered high vi

scosity resources that must be transferred via production lines 

or chains after production (Zhang et al, 2014).  

Heat transfer is the reason why thermal oil recovery technique

s reduce the liquid propane viscosity of heavy oils. These ther

mal recovery techniques include insitu combustion, electric he

ating, steam aided gravity drainage (SAGD), and steam floodi

ng (continuous or cyclic) (Bottler et al.,1981). 

Furthermore, the use of light solvents, such as toluene or 

xylene, which reduce viscosity when added as a percentage of 

weight to heavy oils, has additional benefits, such as 

guaranteeing the preservation of the hydrocarbon’s original 

properties when reduced at / or in comparison to other 

materials that are similar to the emulsification concept (Hu, 

2008). It can be used anywhere, regardless of the climate, 

albeit the thermal methods may not work as well in colder 

climates (Luo, 2007). 

Crude oil dilution with hydrocarbon solvent is used in two 

main processes: enhanced oil recovery, which involves adding 

hydrocarbon solvent to a heavy viscous oil reservoir to lower 

the viscosity on-site (known as solvent-aided steam assisted 

gravity drainage, or SAGD) (Jiminez, 2008), and later 

integrating the produced oil and solvent to be transported via 

pipelines from the well site to refinery systems. 

After comparing a number of predictive mixing rules, 

researchers came to the conclusion that the viscosity of the 

Athabascar bitumem/n-hexane mixture could be evaluated 

using power law and the “cargue” model (Nourazieh, 2005). 

Bassane et al. investigated the viscosity of an unusual viscous 

oil/gas condensate mixture at different temperatures. 

2.0 Materials and Methods 
The materials used in the research evaluation of the Dahomey 

basin fluid include the following: 

i. Electric Muffle furnace that heats a material to 

a maximum temperature of  9000F 

ii. The Agbabu heavy oil sample: Test Sample 

plucked from the field  

iii. Redwood Viscometer: A device or instrument 

used to measure the viscidity or viscosity of 

liquid.  

iv. Pycnometer, Thermometer: A pycnometer is 

used to measure the volume and density, 

sometimes invariably to measure the specific 

gravity of liquid or a degrees API of a liquid. 

v. Haake RS 6000 Rheometer: Measures the 

viscosity of a liquid at specified shear rate or 

shear stress. 

The heavy oil sample was taken at the subsurface with no 

consideration for profile horizons. The deposit span along a 

large belt into an infinitesimal sighting from the point of 

access. The samples were collected and properly labelled and 

transported to the department of Mineral & Petroleum 

Resources laboratory, Federal Polytechnic, Ado Ekiti. The 

heavy oil sample was later tested for thermal profiling in a 

muffle furnace at the Material science and engineering lab, 

Federal Polytechnic, Ado Ekiti, Nigeria, where its procedure 

were derived in accordance with  ASTM D 874. Temperature 

range of the muffle furnace was 11000F. 

 

ASTM D 445 was employed in the determination of kinemati

c viscosity @ 400C and ASTM 446 @ 1000C.   

 

The time it took to fill the measuring cylinder was noted and 

recorded using a stopwatch, and these values were used to 

compute the viscosity index, kinematic viscosity, and absolute 

viscosity using the calculation shown below: 

 

Kinematic viscosity (v) = c x t 

Where c= calibrated viscometer constant cSt/s t = flow time 

(efflux time) in seconds. 

Dynamic viscosity is calculated as (µ) = ƿ x v 

Where ƿ is the density of oil and v is kinematic viscosity. 

The Specific gravity and API gravity of the heavy oil samples 

were determined in accordance with the procedures outlined 

by ASTM D-1298. The shear rate rheological tests were 
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carried out using the Haake RS 6000 Rheometer, 

The Haake RS6000 rheometer, which has a four-bladed vane-

type rotor FL40(diameter 40 mm, gap width 1.5 mm), and a c

oaxial cylinder sensor system (Z38 DIN, gap width 2.5 mm, s

ample capacity 30.8 cm3)were used to perform rheological m

easurements. A liquid temperaturecontrolled system in this ap

paratus enables the sensor system  to reach and maintain a pre

determined temperature during the experiment. Furthermore, i

n order to prevent the unsettling problems, a particle size to ga

p size ratio of less than 1/3 must be attained  when selecting a 

rheometer with a coaxial cylinder sensor to study suspensions. 

Results and Discussions 

Results 
TABLE 1 :KINEMATIC AND DYNAMIC VISCOSITY 

UNDER STANDARD CONDITION & THERMAL 

CONDITION 

S/N DENSITY 

OF 

CRUDE 

(g/cm3) 

TEMPE

RATUR

E (OF) 

DYNAMIC 

VISCOSIT

Y(cP) 

KINEMA

TIC 

VISCOSIT

Y (cst) 

1 0.95 60 7.7672 8.176 

2 0.95 977 2.014 2.120 

 SHEAR RATE RHEOLOGY (shear stress, shear rate, 

apparent viscosity, Plastic viscosity and yield point).  

TABLE 2: shear rate rheology for natural bitumen 

Shear 

stress(

mpas) 

Shear 

rate(s-

1) 

Appare

nt 

viscosit

y(pa) 

Plastic 

viscosity(p

a) 

Yield 

point(lbf/

100ft2) 

0 0 0 3.894 0 

225 40 5.625 3.894 69.24 

325 45 7.222 3.894 149.77 

350 50 7.0 3.894 155.3 

360 60 6.0 3.894 126.36 

455 70 6.5 3.894 182.42 

375 80 4.6875 3.894 63.48 

433.5 90 4.8167 3.894 83.04 

494 100 4.940 3.894 104.6 

510 110 4.6364 3.894 81.66 

550 120 4.5833 3.894 82.72 

525 125 4.2000 3.894 38.25 

 

 

FIGURE 1: Result showing the graph of shear stress (mPa) 

against shear rate (S-1) for natural bitumen 

TABLE 3: Data for apparent viscosity against for natural 

bitumen @ 9770F 

Shear 

stress(

mpas) 

Shear 

rate(s-1) 

Apparen

t 

viscosity

(pa) 

Plastic 

viscosity(

pa) 

Yield 

point 

(lbf/100ft
2) 

0 0 0 0.1433 0 

225 
3 75.0          

0.1433 

224.57 

325 
9 36          

0.1433             

323.71 

350 15 32 0.1433 347.85 

360 
22 16          

0.1433 

356.85 

455 32 14 0.1433 450.41 

375 40 9.375 0.1433 369.27 

433.5 47 9.2234 0.1433 426.76 

494 55 8.98182 0.1433 486.12 

510 61 8.36066 0.1433 501.26 

550 67 8.20896 0.1433 540.40 

525 
72 7.39437          

0.1433 

514.68 
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FIG 2: Result showing the graph of shear stress (mPa) against 

shear rate (s-1) for bitumen @ True Boiling Temperature 

(9770F). 

4.2  DISCUSSION 
4.2.1 DYNAMIC AND KINEMATIC VISCOSITY 

Dynamic viscosity shows how fast a fluid can move or flow 

when under certain force. Table 1 shows that the dynamic 

viscosity at temperature of 15.50C (600F) shows a dynamic 

viscosity of 7.762Cp which is greater than the dynamic 

viscosity at 5250C (9770F) which is 2.014Cp, it therefore 

means the fluid move faster whenever a certain force is 

applied at temperature of 9770F because of the value of 

dynamic viscosity of 2.014cp is far lesser than the dynamic 

viscosity value of 7.762 Cp which is the value at standard 

condition (15.50C). These are the heavy oil measured 

resistance values when an external force is applied. Density is 

not a parameter with dynamic viscosity. 

Though it is expected that the kinematic viscosity should be 

higher than the dynamic viscosity especially when the density 

of crude oil or fluid is less than 1.0g/cm3 . The value in this 

research ascertain the expression. 

In addition, the kinematic viscosity at 600F is higher than 

when at 9770F which shows that the fluid is able is able to 

transport momentum at 600F than at 9770F i.e the kinematic 

viscosity; 8.176Cst transport momentum in reality at 600F 

than at 9770F which is 2.120Cst. These are the resistive flow 

measurements of the heavy oil when no external force, except 

gravity, is acting on it.  

In summary, table 1, at  true boiling temperature of 9770F 

(thermal temperature at a blast furnace) , the dynamic 

viscosity is so low @ 2.014cp compared to the dynamic 

viscosity at 600F where its value is 7.762 cp These are 

condition of viscosity (dynamic) which measure the fluid’s 

inherent resistance to flow when an external force is applied. 

While the kinematic viscosity which shows the measure of the 

fluid inherent resistance to flow under gravity at true boiling 

point which is 2.120Cst and at standard temperature is 

8.176Cst. 

This findings shows further that its density or specific gravity 

as well is lowest compared to others, which still agrees with 

the fact that high viscous fluids and liquids of the low density 

are good candidates for excellent momentum transport 

properties.       

 Discussion of Apparent Viscosity, Plastic Viscosity And 

Yield Point (Shear Rheology) 

Based on the Bingham plastic model, 

τ = Yp + Pv(γ) 

Where, τ = Shear stress, 

 Yp = Yield point, 

 Pv = Plastic viscosity, 

  γ = shear rate. 

The equation provided the plastic viscosity and the yield point 

using the Bingham plastic model. Therefore the apparent 

viscosity, plastic viscosity and yield point values for natural 

bitumen are shown in table 2. 

The apparent viscosity values are determined from using this 

equation: 

AV= 
            

          
 . 

Plastic viscosity of natural bitumen and when at thermal state  

were determined by plotting shear stress against shear rate, 

where the slope value becomes the plastic viscosity. The slope 

value is then substituted into the equation (Bingham model) to 

determine the yield point for each data set. This was carried 

out for natural bitumen at no subjection to thermal and for 

bitumen when subjected to thermal approach of higher 

temperature. Their various apparent viscosity values were 

produced and their plastic viscosity determination from the 

slope of the graph while yield point was determine from the 

Bingham plastic model. 

Table 2. and Table 3 shows the result for plastic viscosity for 

natural bitumen and  bitumen at true boiling temperature , 

which is the thermal state temperature (9770F)  at  3.894Pa 

and 0.1433Pa respectively. 

From  the two tables (Table  2 and Table 3), Table 2 has the 

highest value of plastic viscosity of 3.894Pa, is the highest 

resistance measured value to flow or to deform under shear 

stress or gravitational force in holes or bores while in table 3, 

has the lowest value of plastic viscosity of 0.1433 which 

implies that bitumen at thermal temperature has the lowest 

resistance to flow or deformation. Therefore at table 3, the 

material (bitumen at thermal temperature) will easily flow or 

deform under shear stress or gravitational force as regarding 

in the bores or holes. 

The yield point for natural bitumen at its formation state and 

bitumen at thermal temperature (9770F) are shown in table 2 

and Table 3 at varying shear stress and shear rate.  

The yield point of the heavy oil fluid is the minimum stress 

required to start the fluid flowing, its also referred to as the 

yield stress. In table 2 when the heavy oil is at no thermal 

state, the minimum stress required is 38.25lb/100ft2 at a shear 

stress of 525Mpa.s and a shear rate of  125s-1 .While in table 

3, the minimum stress required to start the fluid flowing is 

224.57lb/100ft2 at a shear stress of 225Mpa.s and a shear rate 

of 5s-1.  

 

Data preparation, Processing & Machine Learning 

Feature Engineering: 

For this research we are working with data from Haake Rs 

rheometer and so far below are the reports from the results 

used for the research. First, we recreated the tables with 

python to ensure the data sets are compatible and in the right 

format.  

Table4.1: Kinematic And Dynamic Viscosity Under Standard 

Condition & Thermal Condition Table4.2.1: shear rate 

rheology (shear stress, shear rate, apparent viscosity, Plastic 

viscosity and yield point )for natural bitumen and  Table 4.2.2: 

Data for apparent viscosity against for natural bitumen @ 9770F 
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Below is a graph plotting Shear Stress vs Shear Rate for both 

Natural Bitumen and Bitumen @ 9770F 

 

From our source data which are Table 4.1: Kinematic and 

Dynamic Viscosity measurements under standard and thermal 

conditions, Table 4.2.1: Shear Rate Rheology for Natural 

Bitumen under standard conditions and Table 4.2.2: Apparent 

Viscosity measurements at elevated temperature (977°F), we 

have physical properties such as Density, Temperature, 

Dynamic Viscosity and Kinematic Viscosity we also have 

the data on the shear stress for natural Bitumen as well as 

shear stress for natural bitumen when exposed to 9770F from 

the results as seen in tables 4.2.1 and 4.2.2 we also have data 

points on apparent viscosity, plastic viscosity and yield 

point for both instances.  

Next, we prepared and combine data from the three tables and 

added new features for the model training and analysis. The 

tables were converted to data frames to be used to train the 

models however for a better modelling, additional features 

were created which are: 

 Shear Stress/ Shear Rate Ratio (τ/γ): Captures 

non-Newtonian behaviour 

 Temperature-Density Product (ρT): Represents 

thermal energy content 

The data integration methodology addresses three critical 

aspects: 

 Temperature Range Handling (60°F - 977°F): 

The purpose of this is to create a continuous 

temperature profile however important to take note 

that this may introduce interpolations errors in 

regions where experimental data might be 

insufficient see code structure in image below: 

  or shear stress-rate Ratio (τ/γ )  we had used the 

1e-6 term to prevent division by zero thus 

representing the instantaneous apparent viscosity at 

each measurement point 

 While for the Temperature density product (ρT), 

the purpose was to capture the thermal energy 

content per unit volume assuming linear density 

variation with temperature. 

These features were primarily added for improved predictive 

power of the machine learning models  

 

Machine Learning Architecture & Pipeline:  

For this research we use an ensemble model, a 3-stage 

SKLearn pipeline. The combination of these models is to 

ensure that the machine learning models perform better when 

features are on similar scales. This implementation represents 

a significant advancement in rheological property predictions 

and a novel feature engineering for non-Newtonian fluids. 

The 3-step pipeline contains the Standard Scaler, 

Polynomial Features and Gradient Boosting Regressors 

with each representing a sophisticated approach to rheological 

property prediction combining classical physical 

understanding with modern machine learning techniques. This 

methodology further illustrates a robust performance towards 
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providing valuable insights not just with respect to feature 

importance but to model behaviour as well.  

In the next paragraph, we cover why these 3 models were 

selected. But first it is important to note that some of the 

primary reasons was to ensure modularity, reproducibility and 

improved performance. Modularity such that each step 

focuses on handling a specific task e.g scaling, interaction 

terms or modelling thus making the ML pipeline much easier 

to debug and keep the code framework clean. Also with this 

architecture model, the exact same transformations can be 

applied to both training and testing of datasets thus preventing 

data leakage and inconsistencies which justifies the 

reproducibility purpose for using the 3-step model.  

 

By combining preprocessing, feature engineering with a 

powerful model like gradient boosting, this pipeline 

encapsulates all transformations in a single object and thus 

can be saved and deployed as one cohesive unit further 

enhancing ease of experimentation such that a components 

can be easily swapped out or replaced without rewriting the 

entire code. 

Standard Scaler:  For this research, the Standard Scaler was 

used for the primary purpose of data normalization. It 

removes the mean and scaling to unit variance thus ensuring 

all features contribute equally during training. Without adding 

the Standard Scaler to this ensemble model, features with 

larger numeric ranges e.g temperature could dominate over 

smaller-range features like density thus creating a bias in the 

model but with the implementation of Standard Scaler this 

helps to normalize feature distributions thus ensuring all the 

features have similar scales especially considering the fact 

that we will be using the gradient boosting algorithm which is 

quite sensitive to feature scaling. 

 

Polynomial Features: Considering the nature of the research 

and datasets and in-order to address the fundamental 

challenge of modelling non-Newtonian fluid behaviour where 

the relationship between shear stress (τ) and shear rate (γ ) 

is non-linear and temperature-dependent, as part of the 

Machine learning pipeline, Polynomial features were 

implemented to generate second-order interaction terms as 

well as powers of the original features. This is to enable the 

model to capture non-linear relationships in the data thus the 

model is able to learn interaction like Density, Temperature, 

Shear Stress/Rate Ratios as these interactions may correlate 

with outcomes/target variables. Without the polynomial 

features, the model may struggle with these non-linear 

relationships and thus might lead to underfitting especially if 

the target variable is dependent on non-linear interaction like 

in the case of this study. By introducing Polynomial features 

as part of the ML pipeline and architecture we were able to 

reduce the possible errors that many arise from underfitting 

thus improving model performance.  

3. GradientBoostingRegressor – In this pipeline architecture 

and assembly, the gradient boosting regressor is the actual 

machine learning model used for prediction primarily for a 

couple reasons - one of which is the ability of the Gradient 

Boosting model to combine the predictions of many weak 

learners/decision trees to create a strong accurate model. It is a 

robust ensemble-based algorithm and works well for datasets 

with non-linear patterns like the case of this research and the 

unique ability to handle feature importance effectively.  

The GradientBoostingRegressor implements the following 

loss minimization: 

L(y, F(x)) = Σᵢ(yᵢ - F(xᵢ))² 

where F(x) is constructed through the additive model: 

F(x) = Σₘ₌₁ᴹ βₘh(x; aₘ) 

with: 

 h(x; aₘ) representing individual regression trees 

 βₘ as the learning rate-adjusted weights 

 M total number of boosting iterations 

This model performs non-linear regression and for this 

research the model hyperparameters configured are as 

follows; 

 1000 estimators/trees,  

 a learning rate of 0.1,  

 maximum depth of 3  

 and a controlled randomnization (seed: 42).  

These hyper-parameter tuning configuration is to ensure a 

balance between model complexity and computational cost 

however, much as adding more trees could improve 
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performance, at a certain point this could harm generalization 

when the model starts overfitting and learning noise in the 

data so in-order to prevent this, the decision trees were 

configured as 100 which in most cases is often a good starting 

point. By keeping the learning rate at 0.1 allows for fast 

convergence without causing jumps in the model performance 

while the seed 42 is to allow the model results be consistent 

across different runs. The maximum depth of 3 keeps the 

individual trees simple and also avoids overfitting too as this 

hyperparameters allows the model to focus on residual errors 

while protecting the  model from learning through noise that 

might arise from overfitting. 

For this pipeline, data was split into 80-20 ratio with 80% 

used to train and 20% for testing the data thus allowing for 

unbiased performance assessment. 

The independent variables (x) which are: "Density", 

"Temperature", "Shear Stress", "Shear Rate", 

"Shear_Stress_Rate_Ratio", 

"Temperature_Density_Product were selected from the 

data_combined DataFrame and are used to predict the target 

variables (y) which could be any of Apparnet Viscosoty, 

plastic viscosity of yield point. For each iteration of the loop, 

one of these targets is selected for model training and 

evaluation.  

Model Limitations and Model Evaluation Framework: 

It would be important to point out some possible limitations of 

the current model primarily the temperature range validity as 

the model assumes continuous behaviour between 60f and 

977F. Another limitation worth taking note is the shear rate 

limitations - considering zero shear rate handling is 

numerically stabilized but physically approximate and finally 

will be the time dependent effects as long term structural 

changes are not modelled and phase transition or structural 

changes in the bitumen are not explicitly handled.  

The model is trained using the fit() function on the training 

data and after training predictions are made on the test set. For 

this model, several metrics were computed to evaluate the 

model’s performance. Take note this is a regression model 

and as such some of the metrics computed were R2 – 

Coefficient of Determination, MAE – Mean Absolute Error, 

MSE -Mean Squared Error and RMSE – Root Mean Squared 

Error.   

In addition to these quantitative metrics, other qualitative 

analysis implemented as part of the model architecture 

includes the actual vs predicted visualization as well as the 

SHAP value analysis for feature importance interpretation and 

explainability. 

The model generates three predictions – Apparent Viscosity, 

Plastic Viscosity and Yield point with each prediction 

containing the accuracy metrics which are RMSE, R2, MAE  

as well as feature importance using SHAP analysis. While the 

quantitative metrics could provide insights on model 

prediction further described and covered herein, the SHAP 

values helped identify how each feature contributed to the 

predicted results. It is important to note that while RMSE 

captures absolute prediction errors in physical units, the 

values were derived from the square root of MSE. Where 

MSE (Mean Squared Error is the average of the squared errors 

between the predicted and actual values. MAE reveals the 

average of the absolute errors between predicted and actual 

values while the R2 explains variance proportion. In 

subsequent chapters, we shall look at these results from the 

models and interpretations and analysis in the context of 

experimental uncertainty as relative to the scope of this 

research 

Understanding the results: 
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(Above) Apparent Viscosity: - RMSE: 2.1546 Pa·s - R² 

Score: 0.8428 - MAE: 1.6650 Pa·s  

Next: Plastic Viscosity: - RMSE: 1.6773 Pa·s - R² Score: 

0.1667 - MAE: 0.7502 Pa·s 

 

 

Next: Yield Point: - RMSE: 30.5390 Pa - R² Score: 0.9627 - 

MAE: 27.7179 Pa 

 

 

Interpretations of Results – Statistical Interpretations: 

Understanding the SHAP values as illustrated in visual 

diagram. For apparent viscosity, it appears Density, Shear 

Stress/Rate Ratio seems to have a significantly high impact on 

model prediction. While in the case of yield point we find that 

density, temperature density product as well as temperature 

seems to have a high impact on model outcome which is quite 

similar to the case of plastic viscosity.  

 

 

In the context of this research, yield point represents the 

minimum stress needed to initiate flow and from these results, 

we find that the yield point prediction has a remarkably 

outstanding R² of 0.9627 which indicates excellent prediction 

capabilities and strong correlation with input parameters. The 

RMSE and MAE values of 30.5390 and 27.7178 further 

suggest both success in capturing the physical transition from 

solid to fluid behaviour and a possible influence of 

temperature and shear history.  ll of which appears to be in 

line with the Herschel- ulkley model (τ = τy +   γ n ) 

implementation.  

Herschel-Bulkley Model: τ = τy +   γ ⁿ 

 τ: Shear stress (Pa) 

 τy: Yield stress (Pa) - minimum stress needed to 

initiate flow 

 K: Consistency index (Pa·sⁿ) - indicates the fluid's 

"thickness" 

 γ : Shear rate (s⁻¹) - rate of deformation 

 n: Flow behavior index - indicates deviation from 

Newtonian behavior  

o n < 1: shear-thinning (like bitumen at high 

temperatures) 

o n > 1: shear-thickening 

o n = 1: reduces to Bingham model 

Looking at the R² values of the apparent viscosity (0.8428), 

we find that while a good R² illustrates a successful modelling 
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of temperature dependence and also effectively capturing non-

newtonian behavior, the RMSE of 2.1546Pa suggests 

reasonable accuracy for practical applications. However, 

plastic viscosity seems to require need for improved feature 

engineering as the poor R² (0.1667) not only reveals the 

possibility of non-linear effects not being captured by current 

model but also potential violation of the Bingham plastic 

model assumptions mentione earlier in this research. The poor 

R² also seems to suggest complex particle interactions as the 

plastic viscosity represents the resistance to flow due to 

mechanical friction and provides more insights into 

understanding solid particle effects.  

Looking at these from a theoretical perspective, these 

observations open more interesting questions about the nature 

of fluid behaviour and hopefully the findings contained herein 

could help contribute to the broader understanding of machine 

learning applications in rheology.   

Practically however, the strong performance in yield point 

predictions could suggest immediate applications in real time 

control and monitoring systems or perhaps in preventing stuck 

pipe incidents. The predictions from the apparent viscosity 

could also support implementation in quality control systems 

but important to put in place meticulous consideration of error 

margins.  

While the plastic viscosity outcome might be disappointing at 

first, it no doubt creates the room for further research in these 

areas and challenges our current understanding and 

investigations of non-linear relationships and possible hidden 

variables that might better explain the plastic viscosity 

behaviour. Nonetheless, this outcome also suggest that while 

our model maintains a reasonable absolute accuracy, it 

experiences challenges in capturing possible underlying trends 

in plastic viscosity variations thus further indicating a need for 

more sophisticated modelling approaches perhaps ones that 

incorporate additional physical constraints or alternative 

feature engineering strategies. 

Engineering Insights & Benefits of Machine Learning: 

While this research demonstrates and illustrates some 

machine learning advantages as well as reveals advanced ML 

implementation insights,  we shall cover some 

recommendations to be considered for future work 

nonetheless it is important to explore some engineering 

insights and benefits of ML from this research. Some key 

engineering insights as revealed from the models includes 

temperature-dependent behaviours where critical temperature 

ranges (275-3250F) are being identified as where properties 

change most rapidly. Also, non-linear viscosity reduction 

accelerates above 6000F while yield stress exhibits 

exponential decay with temperature. On shear response, the 

study revealed distinct regimes identified in shear responses 

with shear-thinning behaviours dominate below 90 s⁻¹ and 

Pseudo-Newtonian plateau emerges above 100 s⁻ 

Conclusions 
The thermal application of enhanced oil recovery of bitumen 

to reduce its viscosity and enhance its flow is an important 

method for recovering bitumen and other heavy crude oils, 

especially to enhance its flow performance. This study 

therefore resulted to the following conclusions about the 

Agbabu bitumen in the Eastern Dahomey Basin in Ondo 

State, Nigeria. 

 

i) The Eastern Dahomey fluid i.e Agbabu bitumen has 

a high viscosity and high density in its natural form 

when subjected to force (shear stress). 

ii)  The application of high level of thermal effect, 

conditioning the material  bitumen to a temperature 

of 9770F reduced its viscosity and density which has 

enhance its flow rate under subjection to shear stress 

compared to its natural form. 

 

Recommendations 
The recovery and production of bitumen and other heavy oil is 

rapidly gaining attention and research needs to be deepened in 

many areas of the subject to achieve success. The study of the 

rheology bitumen systems under thermal effect is essential to 

reservoir engineering and the below suggestions can help 

improve knowledge in this direction. 

Introducing higher temperature condition closely has the 

potentials of altering the interactions between the heavy oil 

component causing structural change or unpredictable 

rheological responses. Hence, more study must be focused on 

the interactions between the heavy oils (bitumen).  

For future works it is important to consider larger data sets for 

the research to allow for exploring other splitting formulars 

like 60-20-20 amongst other variations and benefits. With a 

larger dataset, incremental learning could be implemented as 

well as sparse matrix operations for polynomial features. 

Other areas to be considered for future works includes but not 

limited to considering Bayesian inference for parameter 

uncertainty and to explore physics informed neural networks 

(PINNS) as part of the model architecture.  

For validation methodology, future works could include 

residual analysis for systematic errors, add out of distribution 

detection as well as consider k-fold, cross validation with 

temperature stratification. As advanced model architectures 

are to be considered for future works, online learning 

algorithms and adaptive control systems will contribute 

immensely to this body of work. Enhanced feature 

engineering like wavelet transformations for time-series, 

gaussian process regression for uncertainty as well as 

dimensionality reduction techniques implemented in advanced 

feature engineering should be considered to further guide 

future directions. Much as this current research work could 

represent a sophisticated approach to non-Newtonian fluid 

modelling with machine learning, future works should focus 

on incorporating improvements while still maintaining the 

computational efficiency and interpretability. Nonetheless, a 

combination of machine learning with traditional rheological 

models no doubt provides unprecedented insights into 

bitumen behaviour, the combination of both will also further 
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enable better understanding and more precise control of 

industrial processes. 
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