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Abstract 

As our oceans play a crucial role in maintaining ecological balance, the need for efficient 

methods to monitor and study marine life becomes paramount. This paper introduces a novel 

approach to underwater marine species identification using YOLOv8, a state-of-the-art object 

detection model. Leveraging a diverse dataset of underwater imagery, this study addresses the 

unique challenges posed by the underwater environment, such as variable lighting conditions 

and complex backgrounds. We detail the methodology, encompassing dataset preparation, 

model configuration, and training parameters specific to underwater species identification. 

Our experimental results showcase the effectiveness of YOLOv8 in accurately detecting and 

classifying various marine species. This study marks a pioneering effort in deploying YOLOv8 

for underwater marine species identification and lays the groundwork for future 

advancements. Additionally, the model's architecture is designed with scalability in mind, 

paving the way for transfer learning to incorporate more parameters and expand the range of 

identified species, thus enhancing the model's capabilities for broader applications in marine 

research and conservation.  

I. Introduction 
The exploration and conservation of marine life are integral to 

understanding and preserving the delicate balance of our 

oceans. This study introduces a pioneering application of 

YOLOv8, implemented through the Ultralytics library, for the 

purpose of underwater marine species identification. YOLOv8, 

renowned for its efficiency and accuracy in object detection, is 

adapted to address the distinctive challenges presented by the 

underwater environment. The identification of marine objects, 

particularly underwater species, has traditionally relied on 

manual methods, visual observation, and limited automated 

techniques. Current approaches often involve time-consuming 

and labor-intensive processes, such as human divers visually 

cataloging species or utilizing basic image recognition 

algorithms. However, these methods are prone to inaccuracies 

and lack the precision required for comprehensive marine 

species monitoring. The inherent challenges of underwater 

environments, such as varying lighting conditions and complex 

backgrounds, further exacerbate the limitations of existing 

methodologies.  

In response to these challenges, the application of computer 

vision, particularly advanced object detection models like 

YOLOv8, emerges as a transformative solution. By leveraging 

deep learning and sophisticated algorithms, computer vision 

offers the potential to enhance the accuracy and efficiency of 

marine object identification. This study focuses on harnessing 

the power of YOLOv8 to address the shortcomings of current 

methods, providing a more accurate and precise approach to 

underwater marine species identification.  

Real-time object detection remains challenging due to 

variances in object spatial sizes and aspect ratios, inference 

speed, and noise. This is especially true for our use case, as 

marine species can change location, scale, rotation, and 

trajectory very quickly. This conveys the necessity for fast 

inference speed and thorough model evaluation between low 

variance classes, object sizes, rotations, backgrounds, and 

aspect ratios. 

 The model is trained on a meticulously curated dataset 

featuring five distinct marine species: fish, eel, jellyfish, 

lobster, and lionfish. Each of these classes represents a critical 

component of marine ecosystems, and the accurate 

identification of these species is essential for marine biologists, 

ecologists, and conservationists.   

This paper provides an in-depth exploration of the 

methodology employed, encompassing dataset preparation, 

model configuration, and training specifics, as well as the 

experimental results demonstrating the model's efficacy in 

accurately identifying the specified underwater species. 
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Additionally, this work sets the foundation for future research 

by highlighting the model's adaptability for transfer learning, 

enabling the incorporation of additional parameters and the 

expansion of the classification scope to contribute to a more 

comprehensive understanding of underwater biodiversity. 

 II. LITERATURE OVERVIEW 
The literature review aims to contextualize the current state of 

knowledge in the field of underwater marine species 

identification, object detection, and computer vision. In 

examining existing studies, we find that the application of 

object detection techniques for underwater marine species 

identification has demonstrated promising outcomes. Studies 

utilizing various models and techniques, have successfully 

identified marine species. However, common challenges 

persist, indicating the need for more robust and adaptable 

models. 

Underwater object detection and marine monitoring have seen 

significant progress in recent studies, each offering distinct 

insights into challenges posed by the underwater environment. 

In the realm of underwater robotic vision, MARS (Multi-Scale 

Adaptive Robotics Vision) emerges as a notable innovation 

[1]. MARS integrates Residual Attention YOLOv3 with 

Domain-Adaptive Multi-Scale Attention (DAMSA), enhancing 

detection accuracy and adaptability across diverse underwater 

scenarios. Notably, MARS achieves a mean Average Precision 

(mAP) of 58.57% on the original dataset, demonstrating 

proficiency in detecting critical underwater objects. Its robust 

performance is further highlighted by an mAP of 36.16% on 

the augmented dataset, showcasing adaptability in varying 

conditions. 

Another significant contribution comes from a study focusing 

on temperate fish detection and classification. This research 

employs a two-step deep learning approach, utilizing the 

YOLO object detection technique and a Convolutional Neural 

Network (CNN) with Squeeze-and-Excitation (SE) 

architecture [2]. The solution attains state-of-the-art accuracy 

of 99.27% on pre-training and exhibits viability in post-

training, with accuracy reaching 83.68% and 87.74% with and 

without image augmentation, respectively. 

In addressing challenges related to underwater target detection, 

an improved YOLOv7 network (YOLOv7-AC) is proposed 

[3]. This network introduces innovations such as the 

ACmixBlock module, ResNet-ACmix module, and a Global 

Attention Mechanism (GAM), resulting in enhanced feature 

extraction and network reasoning speed. The improved 

YOLOv7 network outperforms the original YOLOv7 model 

and other popular underwater target detection methods, 

achieving a mean average precision (mAP) of 89.6% and 

97.4% on the URPC dataset and Brackish dataset, respectively. 

Furthermore, a comprehensive review and analysis shed light 

on the challenges and advancements in underwater object 

detection. Traditional methods often fall short in accuracy and 

generalization capabilities, necessitating the exploration of 

deep learning-based techniques. The study emphasizes the 

importance of addressing challenges unique to underwater 

environments, providing insights for future research efforts [4]. 

Additionally, a study focusing on object detection in 

underwater environments assesses conventional state-of-the-art 

(SOTA) algorithms, highlighting the need for "ad-hoc" 

architectures tailored to the underwater setting [5]. The 

evaluation includes considerations of pretraining, two-stage 

detectors, and generalization capability, providing valuable 

guidance for future underwater object detection research. 

Moreover, the adaptation of YOLO or similar object detection 

models to specific domains, such as underwater environments, 

is an area that requires more exploration. Studies employing 

YOLO-based approaches, including Underwater target 

detection algorithm based on improved YOLOv4 with 

SemiDSConv and FIoU loss function [6], showcase the 

efficiency and real-time capabilities of these models. These 

studies collectively contribute to the evolving landscape of 

underwater object detection, showcasing innovations and 

insights that pave the way for further advancements in this 

challenging domain. 

In tandem with these advancements, our research makes 

distinctive contributions to the field of underwater object 

detection. Unlike previous studies that primarily focus on 

specific marine species or environmental conditions, our 

approach aims for a more holistic understanding by 

encompassing a diverse set of marine objects and 

environmental scenarios. This broader scope allows for a more 

comprehensive evaluation of the model's performance in real-

world applications, where variability in species and 

environmental conditions is the norm. 

Our work leverages the advanced YOLOv8 model, known for 

its superior accuracy and speed. YOLOv8 achieves a 

remarkable 50.2 mAP score at 1.83 milliseconds on the COCO 

dataset and A100 TensorRT [7]. Our approach capitalizes on 

key features of YOLOv8, including mosaic data augmentation, 

anchor-free detection, a C2f module, a decoupled head, and a 

modified loss function [8]. This not only enhances the 

precision of object detection but also provides a more efficient 

and adaptable solution compared to existing models, making it 

particularly well-suited for real-time applications in 

underwater image analysis and target detection. 

The dataset used in our study is meticulously curated to 

include a comprehensive representation of specific marine 

objects, ensuring that the model's training and evaluation 

encompass a wide spectrum of conditions. This approach 

positions our research as a valuable addition to the current 

body of literature, providing insights that extend beyond 

specific species or environments. 

In summary, our research not only builds upon the 

achievements of prior studies but also introduces novel 

methodologies and considerations in current underwater object 

detection research. By offering a more holistic and adaptable 

approach, our work contributes to advancing the state-of-the-

art in underwater computer vision, providing valuable insights 

for marine robotics, biology research, and environmental 

monitoring. 



Global Scientific and Academic Research Journal of Multidisciplinary Studies ISSN: 2583-4088 (Online) 

*Corresponding Author: Moayed D. Daneshyari              © Copyright 2024 GSAR Publishers All Rights Reserved  Page 37 

III. Model architecture 
In this section, we present a detailed exploration of our 

methodology, focusing on the YOLOv8 model—a leading 

object detection framework recognized for its accuracy and 

speed. Our methodology incorporates key YOLOv8 features, 

its architecture, explaining why it's the optimal choice for our 

research objectives. Additionally, we highlight adaptations and 

innovations tailored for efficient underwater image analysis 

and target detection.  

YOLO: A Comprehensive Overview 
The object-detection algorithm "You Only Look Once" 

(YOLO) made its debut in 2015 through the research paper 

titled "You Only Look Once: Unified, Real-Time Object 

Detection" by Joseph Redmon, Santosh Divvala, Ross 

Girshick, and Ali Farhadi [8]. This groundbreaking algorithm 

marked a significant leap forward in real-time object detection, 

outperforming its predecessors and introducing a unified 

framework that revolutionized the field of computer vision. 

 
YOLO operates as a single-shot algorithm, classifying an 

object directly in a single pass. It accomplishes this by utilizing 

only one neural network to predict bounding boxes and class 

probabilities, employing a full image as input. Over time, the 

YOLO model family has seen continuous evolution, with 

various research teams releasing different versions. The latest 

iteration, YOLOv8, represents the most recent advancement in 

this lineage. The subsequent section provides a concise 

overview of the historical versions of YOLO and their 

respective enhancements.  

This sets itself apart from traditional Convolutional Neural 

Network (CNN) models by adopting a unique strategy for 

object detection. Unlike many models employing a two-stage 

process that includes region proposals and subsequent 

classification, YOLO accomplishes object detection in a single 

forward pass through the neural network. 

For instance, while both Faster R-CNN and YOLO leverage 

CNN as their core and share the common objective of 

enhancing the division of region proposals based on CNN, 

their frameworks exhibit notable differences. 

This distinguishing feature becomes apparent when we 

contrast YOLO with the R-CNN model [9]. 

 
Figure 1: Architecture of CNN 

R-CNN utilizes region proposal methods to initially generate 

potential bounding boxes in an image and then applies a 

classifier to these proposed boxes. It conducts detection on 

multiple region proposals, leading to predictions being made 

multiple times for various regions of an image. 

This involves intricate pipelines that are slow and difficult to 

optimize, primarily due to the necessity of training each 

individual component separately. 

 

 
Figure 2: Yolo architecture [11] 

In contrast, YOLO takes a different approach by dividing the 

input image into a grid and directly predicting bounding boxes 

and class probabilities, ensuring computational efficiency. The 

YOLO architecture resembles a fully connected convolutional 

neural network (FCNN), where the image passes through the 

FCNN once, and the output provides the prediction. This 

unified model involves a single convolutional network that 

simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. Training on full images and 

optimizing detection performance directly, YOLO's unified 

model offers several advantages over traditional object 

detection methods. The incorporation of anchor boxes in 

YOLO further enhances the precision of bounding box 

predictions, allowing effective handling of objects with diverse 

sizes and aspect ratios. 

The real-time processing capabilities of YOLO make it well-

suited for applications like video analysis and autonomous 

vehicles, where low latency is crucial. In comparison to other 

models, which performs convolution on a region of interest, 

YOLO achieves detection and classification simultaneously. 

YOLO demonstrates fewer background errors, making it more 

efficient than Faster R-CNN in certain scenarios. The end-to-

end training and real-time speed of YOLO contribute to its 

high average precision. While there are several models like 

Faster R-CNN which also end-to-end training, the process 

involves more steps compared to YOLO. YOLO strikes a 

balance between accuracy and speed, positioning it as a 

practical choice for real-time applications. 

The YOLO (You Only Look Once) series of models has 

become famous in the computer vision world. YOLO's fame is 

attributable to its considerable accuracy while maintaining a 

small model size. YOLO models can be trained on a single 

GPU, which makes it accessible to a wide range of developers. 

Machine learning practitioners can deploy it for low cost on 

edge hardware or in the cloud. 

Brief History of YOLO 

YOLO, introduced in 2015 by Joseph Redmond, has 

undergone significant evolution within the computer vision 

https://blog.roboflow.com/guide-to-yolo-models/
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community [10]. In its early days (versions 1-4), YOLO was 

maintained in C code within a custom deep learning 

framework named Darknet, crafted by Redmond. The journey 

of YOLO has witnessed iterative improvements, with each 

version building upon the successes of its predecessors.  

YOLOv1 (2015): The inaugural YOLO model, utilized a 

single convolutional neural network (CNN) for object 

detection, distinguishing itself with speed but lagging in 

accuracy compared to two-stage models at the time.  

YOLOv2 (2016): This model introduced anchor boxes to 

enhance detection accuracy and incorporated the Up-sample 

layer to improve the resolution of the output feature map. 

YOLOv3 (2018): YOLOv3 aimed at improving accuracy and 

speed, adopting the Darknet-53 architecture, a variant of 

ResNet tailored for object detection. Enhanced anchor boxes, 

Feature Pyramid Networks (FPN), GHM loss function, and 

broader object size and aspect ratio coverage contributed to 

increased accuracy and stability. 

YOLOv4 (2020): - Released in 2020, this model brought 

notable improvements, including a new backbone network, 

enhanced training processes, and increased model capacity. It 

introduced Cross mini-Batch Normalization to enhance 

training stability. 

 

Figure 3: Timeline of Yolo models [8] 

YOLOv5 (2020): An open-source project by Ultralytics, 

Yolov5 utilized the EfficientDet architecture based on 

EfficientNet, achieving improved object detection 

performance. It emerged as the world's state-of-the-art 

repository for object detection in 2020. 

YOLOv6 (2021): YOLOv6 focused on efficiency and memory 

footprint reduction, employing the SPP-Net (Spatial Pyramid 

Pooling Network) architecture for handling objects of various 

sizes and aspect ratios. 

YOLOv7 (2022): YOLOv7 introduced the ResNeXt CNN 

architecture, a multi-scale training strategy, and the Focal Loss 

technique to address class imbalance in object detection tasks. 

YOLOv8 (2023): YOLOv8, the latest version as of 2023, 

signifies a leap forward in real-time object detection 

capabilities, offering state-of-the-art accuracy and speed. 

Represents continuous advancements driven by research and 

innovation in the computer vision community. 

The evolution from YOLOv1 to YOLOv8 showcases 

continuous research and innovation, pushing the boundaries of 

object detection in computer vision. This collective effort has 

enabled real-time object detection systems to operate with 

unparalleled efficiency and accuracy, contributing to the 

ongoing progress in the field. 

YOLOv8 Architecture 
The architecture of YOLOv8 refines the groundwork laid by its 

predecessors, introducing crucial enhancements to fortify 

object detection capabilities. Comprising two main 

components—the backbone and the head—YOLOv8 leverages 

a modified version of the CSPDarknet53 architecture as its 

backbone. This architecture, equipped with 53 convolutional 

layers, incorporates cross-stage partial connections, enhancing 

information flow between layers for more effective feature 

extraction. 

The head of YOLOv8 plays a pivotal role in the architecture, 

consisting of multiple convolutional layers followed by fully 

connected layers. This segment is instrumental in predicting 

essential information, including bounding boxes, objectness 

scores, and class probabilities for identified objects. 

One of the distinctive features of YOLOv8 is its integration of 

a self-attention mechanism within the head. This mechanism 

empowers the model to dynamically focus on different regions 

of the image, adjusting the importance of various features 

based on their relevance to the detection task. This adaptive 

mechanism contributes to the model's overall flexibility. 

 
Another notable strength of YOLOv8 lies in its proficiency in 

multi-scaled object detection. Leveraging a feature pyramid 

network, the model demonstrates the capability to detect 

objects of diverse sizes and scales within an image. This 

network, consisting of multiple layers tailored to identify 

objects at various scales, enables comprehensive detection of 

both large and small objects, enhancing the model's versatility 

in handling a wide range of scenarios. 

YOLOv8 has also introduced anchor-free model architecture. 

In contrast to previous YOLO versions, YOLOv8 predicts the 

center of an object directly instead of calculating the offset 

from a predefined anchor box. Anchor boxes are fixed 

bounding boxes chosen based on the sizes of objects in the 

training dataset, and they serve as starting points for boundary 

box predictions. The advantage of anchor-free detection lies 

in its flexibility and efficiency, eliminating the need for 

manually specified anchor boxes. This not only simplifies the 

model architecture but also speeds up the post-processing 

step, Non-Maximum Suppression (NMS), which refines 

candidate detections after inference. 

YOLOv8 introduces a C2f module in its backbone instead of 

the C3 module present in previous versions. The key 

difference lies in the concatenation of outputs from bottlehead 
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modules. The C2f module concatenates the outputs of all 

bottlehead modules, while in C3, only the output of the last 

bottlehead module is used. Bottlehead modules consist of 

residual blocks that reduce computational costs, thereby 

accelerating the training process and improving gradient flow 

in deep learning networks. 

YOLOv8 employs online image augmentation during training, 

presenting the model with slightly different variations of 

images at each epoch. One specific augmentation technique, 

mosaic augmentation, involves stitching four images together. 

This forces the model to learn objects in new locations, partial 

occlusion, and against different surrounding pixels. YOLOv8, 

however, introduces a change by stopping the mosaic 

augmentation in the last ten training epochs to optimize 

performance. 

In YOLOv8, the head of the network no longer performs 

classification and regression tasks simultaneously. Instead, 

these tasks are decoupled, leading to improved model 

performance. This modification allows the model to 

independently focus on each task, enhancing its ability to make 

accurate predictions. 

The decoupled head introduces the possibility of loss 

misalignment, where the model may localize one object while 

classifying another [15]. To address this, YOLOv8 

incorporates a task alignment score. This score, based on 

positive and negative samples, multiplies the classification 

score with the Intersection over Union (IoU) score. The IoU 

score measures the accuracy of a bounding box prediction. 

Using the alignment score, the model selects top-k positive 

samples and computes classification loss using Binary Cross-

Entropy (BCE) and regression loss using Complete IoU 

(CIoU) and Distributional Focal Loss (DFL). The BCE loss 

measures the difference between actual and predicted labels, 

CIoU loss considers the predicted bounding box's relation to 

the ground truth in terms of center point and aspect ratio, and 

DFL optimizes the distribution of bounding box boundaries by 

focusing more on misclassified samples. 

Rationale behind using YOLOv8 
YOLOv8 is designed with a focus on extensibility, making it 

compatible with all previous versions of YOLO. This unique 

feature allows users to seamlessly switch between different 

YOLO versions, facilitating easy comparison of performance. 

For users with existing YOLO models, YOLOv8 provides an 

opportunity to leverage the latest YOLO technology while 

maintaining compatibility with previous versions. 

 
Figure 4: Evaluation metrics of yolov8 for coco dataset 

The Ultralytics team has consistently benchmarked YOLOv8 

against the COCO dataset, showcasing impressive results 

compared to its predecessors [13]. These benchmarking results 

underline the effectiveness of YOLOv8 in delivering a balance 

between performance, speed, and computational cost, making 

it a compelling choice for various computer vision 

applications, including object detection tasks on diverse 

datasets. 

 
Figure 5: Benchmarking results for yolov8 on coco dataset 

When evaluating object detection performance on the COCO 

dataset across different YOLO lineages and model sizes, 

YOLOv8 demonstrates compelling results:  

 YOLOv8m Model: Achieves an mAP of 50.2% on 

the COCO dataset. 

 YOLOv8x Model: Achieves a higher mAP of 

53.9%, despite having more than double the number 

of parameters compared to YOLOv8m. 

 
Figure 6: Bar plot shows the average mAP@.50 for each 

RF100 category 

IV. experiment 
This section details the comprehensive experimental approach 

undertaken to evaluate the performance and capabilities of the 

proposed YOLOv8-based model for underwater marine species 

identification and object detection. The experiments are 

designed to validate the effectiveness of the YOLOv8 

architecture, assess the impact of key features, and provide 

insights into its real-world applicability. In the subsequent 

subsections, we delve into the dataset used, training 

procedures, evaluation metrics, and present the results, offering 

a thorough analysis of the model's performance under various 

conditions. This empirical exploration serves as a critical 

component in substantiating the claims and contributions put 

forth in this research. 
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1. Datasets 
This section delves into the composition of the dataset utilized 

for training and validating the YOLOv8 model, emphasizing a 

diverse representation of marine species with a primary focus 

on eel, fish, lobster, lionfish, and jellyfish classes. 

The foundation of the dataset was laid with the "Sea Animals 

Image Dataset" which is also available on Kaggle. This initial 

dataset included 496 images each for eel and fish (including 

lionfish), along with 500 images for lobster and 846 images 

for jellyfish. 

To enrich the model's adaptability and extend its capabilities, 

the dataset underwent a substantial expansion. Additional 

images were curated from diverse online repositories such as 

Fathomnet and images.cv. Manual annotation using Roboflow 

ensured precise labeling for each image [14]. Leveraging 

Roboflow's capabilities, image augmentation techniques were 

applied, encompassing adjustments for noise, brightness, 

saturation, and exposure. Preprocessing steps involved auto-

orientation and resizing to a standardized 640x640 pixels. 

The final dataset, a result of meticulous expansion and 

annotation efforts, comprised a total of 6853 images out of 

which 5644 were training images, 799 validation images, and 

410 test images. This comprehensive dataset, serves as a 

robust foundation for training and evaluating the YOLOv8 

model's performance in real-world scenarios. 

2. Model Training 
The process of training the YOLOv8 model spanned over a 

period of approximately 3 to 4 months, encompassing various 

stages from data collection and preprocessing to model 

selection, training, and evaluation. Ultralytics Yolov8 

framework was used for the model training. It simplifies the 

process and provides invaluable tools for both novice and 

experienced practitioners, offering a seamless integration of 

state-of-the-art algorithms, thus expediting the development 

of highly accurate and efficient object detection models 

tailored to specific domains. Additionally, Ultralytics 

YOLOv8 framework provides automated scripts for 

evaluating metrics and model performance, streamlining the 

process of assessing the effectiveness of trained models. 

The model underwent an iterative learning process with four 

distinct versions trained using transfer learning. Each iteration 

involved meticulous adjustments based on the insights gained 

from the previous results. Adaptations were made to data 

augmentation techniques, the use of specific weights, 

alterations in learning rates and epochs, and the transition to 

GPU utilization. Throughout these iterations, a noteworthy 

observation emerged—the dataset validation played a pivotal 

role in influencing the results. It became evident that the 

quality of augmentation and the intensity of dataset 

preparation significantly impacted the model's performance. 

As a result, a key learning from these iterations was the 

importance of tailoring the dataset to mimic underwater 

surroundings, accounting for low light conditions and 

incorporating additional background noise. This involved 

adapting images from open sources with a specific focus on 

these environmental considerations. 

The foundation of this approach rested on transfer learning, 

commencing with the initial training utilizing pre-trained 

weights from YOLOv8 on the COCO dataset. This 

preliminary iteration, executed on a CPU for 100 epochs, 

achieved a mean average precision (mAP) of 52% using 

yolov8n.pt. Subsequent iterations involved continual 

refinements to both the model and the dataset. Transitioning 

to the YOLOv8s.pt model and augmenting the dataset with an 

additional 1370 training images and 394 test images, the 

training duration extended to 150 epochs, resulting in a 

notable improvement.  

Recognizing the need for accelerated training and deeper 

image analysis, the training environment shifted to Google 

Colab, harnessing its T4 GPU capabilities. The dataset 

underwent expansion, incorporating more images across 

multiple classes. In Version 3 of the model, a dual strategy 

was employed, incorporating both pre-trained weights and 

transfer learning from the preceding iteration. In this iteration, 

the dataset, consisting of 2932 training images, 418 validation 

images, and 209 test images, underwent augmentation. Two 

variations of the model were trained: yolov8m.pt and transfer 

learning from v2. The yolov8m.pt, trained on 25.9 million 

parameters on the COCO dataset, was chosen for its superior 

mean average precision (mAP) compared to yolov8n.pt and 

yolov8s.pt. The motivation behind training two versions, v3.1 

and v3.2, was to assess how the pre-trained weights 

influenced the learning dynamics of the new model. Given the 

similarity in datasets between the current and previous 

models, capturing parameters and achieving faster learning 

times was facilitated. 

Building upon the iterative improvements from version 3, 

version 4 underwent further enhancements, incorporating 

changes in the dataset guided by insights gleaned from both 

versions of model 3. Emphasis was placed on addressing the 

performance issues observed in specific images in the 

preceding models. These challenging images were 

strategically integrated into the training dataset to refine the 

model's ability to handle complex scenarios. 

In this iteration, the training environment transitioned to 

Kaggle, leveraging the advantages of GPU T4 x2, 30GB 

storage, and unrestricted training time. Two variations were 

trained: version 4.1 with the traditional yolov8 weights, while 

version 4.2, employing transfer learning from the previous 

version, The results from this underscore the continued 

refinement of the model, addressing specific challenges 

identified during the training of earlier versions. 

The training process for Version 5 involved two distinct 

models, each contributing valuable insights into the model's 

performance and potential areas for improvement. In Version 

5.1, which was trained on yolov8n.pt, several enhancements 

were introduced compared to previous datasets. The image 

count was increased, and preprocessing and augmentation 

efforts were intensified. Notably, the class selection was 

refined to include only five classes, omitting the 'school of 
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fish' class. Additional lobster images were incorporated, and 

image lighting was adjusted to simulate underwater 

conditions. Augmentation techniques, such as noise, 

saturation, brightness, exposure adjustments, and flips, were 

applied. The dataset was structured with 5644 training images, 

799 validation images, and 410 testing images. 

Post-training evaluations, revealed promising results, 

indicating high precision levels and substantial recall rates 

across various classes. Upon further inspection of the dataset, 

the results appeared positive, showcasing higher recall and 

accuracy than initially evaluated by the in-built model 

parameters. This observation provides valuable insights for 

future adjustments and enhancements, highlighting the 

dynamic nature of model training in object detection tasks. 

In conclusion, the iterative training process underscored the 

effectiveness of transfer learning and dataset augmentation in 

enhancing model performance. Significant strides were made 

in accuracy and precision, with version 5.1 showcasing 

notable achievements.  

3. Evaluation Metrics 
The iterative training process provided valuable insights into 

the model's learning and performance evaluation. Initial 

trainings on the CPU, utilizing pre-trained weights from 

YOLOv8 such as yolov8n.pt and yolov8s.pt, indicated a 

positive trajectory. The preliminary iteration V1, executed for 

100 epochs, achieved a mean average precision (mAP) of 

52% using yolov8n.pt. Subsequent iterations involved 

continuous refinements to both the model and the dataset. 

For V2, Transition to the YOLOv8s.pt model was made, and 

the dataset was augmented \with an additional 1370 training 

images and 394 test images. This training was completed in 

150 epochs, resulting in a significant improvement. The mAP 

increased to 66% during training and 68% during testing, 

accompanied by a precision of 71%.  

Version 3.1, leveraging the best.pt from the previous version, 

achieved notable enhancements, exhibiting a mAP of 68% 

and a precision of 73%. This version demonstrated significant 

progress, boasting an 88% recall during testing and improved 

accuracy metrics. 

On the other hand, version 3.2, trained using the yolov8m.pt 

model, achieved comparable results with a mAP of 60% 

during training and 71% during testing. Both iterations 

contributed valuable insights for subsequent model 

enhancements.  

Version 4.1 achieved a mean average precision (mAP) of 70% 

and a precision of 72%, while version 4.2, employing transfer 

learning from the previous version, reached a mAP of 71% 

and a precision of 76.5%. These results underscore the 

continued refinement of the model, addressing specific 

challenges identified during the training of earlier versions. 

In the training of Version 5, two distinct models provided 

insights into the model's performance. Version 5.1, trained on 

yolov8m.pt, showcased enhancements compared to previous 

datasets. The image count was increased, preprocessing and 

augmentation were intensified, and the class selection was 

refined to five classes. With 5644 training images, 799 

validation images, and 410 testing images, the model achieved 

commendable metrics with a 200-epoch approach using 

yolov8m.pt: 82.9% precision, 75.4% recall, and a mAP of 

81.7%. During predictions on Kaggle, the model successfully 

detected objects in 371 out of 410 test dataset images, 

achieving an 81% mAP and higher recall. 

 
Figure 7: Precision Curve 

 
Figure 8: Recall Curve 

 
Figure 9: F1 Confidence 

Curve 

 

 
Figure 10: PR Curve 

 

Figure 11: Evaluation metrics from V5 

In Version 5.2, trained on weights from 3.1.1, the model 

underwent additional refinement with a 200-epoch training 

cycle on Kaggle using the best.pt model. It achieved a 

precision of 76.6%, demonstrating similar mAP on training 

and 78% mAP on testing. Insights from evaluation metrics 

include a precision of 0.798, indicating accurate positive 

predictions, and a recall of 0.64, suggesting room for 

improvement. The mAP values at different IoU thresholds 

highlight the trade-off between precision and recall. 

Several visualizations are presented from the training V5 to 

provide a comprehensive understanding of the model's 

performance. The Precision-Recall Curve (P_curve) 

graphically illustrates the trade-off between precision and 

recall, offering insights into the model's ability to accurately 

detect objects across varying confidence thresholds. The 

PR_Curve, an extension of the Precision-Recall Curve with 

thresholds, allows a detailed examination of precision and 

recall at specific confidence levels. The Recall Curve 

(R_curve) focuses on the model's ability to capture true 

positive instances across different confidence thresholds, 

shedding light on its sensitivity to detecting objects. 

Additionally, the F1 Score Curve (f1_curve), showcasing the 

harmonic mean of precision and recall, provides a holistic view 

of the model's overall performance. Furthermore, the 

Normalized Confusion Matrix offers a detailed breakdown of 

classification results, highlighting the distribution of true 

positives, true negatives, false positives, and false negatives 

across different classes.  

Some visual inspection of model predictions is shared below 

which provides an illustrative snapshot, showcasing the 

model's proficiency in identifying objects within a given 

image. The bounding boxes accurately delineate the detected 
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objects, exemplifying the precision achieved by the model in 

localizing and classifying underwater targets.  

 
 

   

    

Figure 12: Visual Inspection of Model Predictions on Test 

Dataset 

A comparative visual analysis across various iterations 

highlights the evolution of the model's performance. Images 

from earlier iterations reveal instances where the model may 

have encountered challenges, such as misidentifications or 

absence of predictions. The below comparison depicts how 

the model has improved from V3 to V4 by decreasing the 

absence of predictions for the class fish. In the following 

comparison, we can see how the ‗eel‘ was not detected in 

earlier versions mainly due to background lighting and noise. 

However, the predictions improved with a precision of 73% in 

V5. 

 
Figure 12: Prediction from V3.2 

 

 
Figure 13: Prediction from V4.1 

 

 
Figure 14: Missed 'eel' prediction in 

V4 

 
Figure 15: Prediction from V4.1 

 

 
Figure 16: Prediction from V5.1 

 
Figure 17: Correctly detected 'Eel' in 

V5 

Also, the latest iterations exhibit remarkable improvements, 

demonstrating corrected box placements and more accurate 

predictions. The focus was also maintained on the camouflaged 

images where the marine species resembles the background 

color and gets lost in the vision. This iterative comparison 

underscores the model's learning trajectory and the incremental 

enhancements achieved over successive training iterations. The 

below 

 
Figure 18: Irregularity in 

the anchor box 

 

 
Figure 19: Corrected box 

placements 

 

 
Figure 20: camouflaged 

lobster not detected in 

earlier versions 

 
Figure 21: Camouflaged 

lobster detected in V5 

 

After the successful training of the iterative YOLOv8 model, 

rigorous testing was conducted, including evaluations on 

brackish water datasets. The model demonstrated remarkable 

adaptability, achieving an impressive 88% accuracy in 

detecting marine objects under brackish conditions. Notably, 

the recall rate reached an outstanding 97% [this is calculated 

on the classes on which the model is trained], underscoring the 
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model's ability to effectively identify and recall instances in 

challenging environments. This achievement signifies the 

robustness and practical applicability of the trained model 

across diverse marine scenarios, emphasizing its potential for 

real-world deployment. 

 
Figure 23: Testing on Brackish water dataset 

V. Conclusion and future directions 
In our pursuit of developing a robust object detection model 

tailored for underwater environments, our research has yielded 

promising results with favorable metrics. However, as is 

customary in cutting-edge technology, there remains an 

ongoing quest for improvement. The evaluation process not 

only validated our model's capabilities but also illuminated 

crucial insights for future directions and enhancements.  

Our focus on achieving high accuracy in object detection under 

challenging conditions, such as low lighting and scenarios 

involving multiple instances of an object, lays a solid 

foundation. Proactive measures, including dataset adjustments, 

rebalancing, and augmented augmentation, are poised to 

further elevate the model's performance across diverse 

scenarios. It is noteworthy that the scarcity of high-quality 

underwater datasets and images remains a significant challenge 

in the development of target detection in underwater 

environments. Hence, future research efforts will aim to curate 

a large and diverse set of underwater datasets, employing 

image enhancement techniques to enhance the overall quality 

of underwater images crucial for detecting underwater targets.  

The iterative training process positions us strategically to 

address evolving challenges in object detection. Future 

research endeavors will concentrate on enhancing the model's 

adaptability to diverse lighting conditions and meticulously 

refining its competence in identifying and categorizing 

multiple instances of objects. This commitment seeks to 

solidify the model's performance in real-world scenarios, 

reinforcing its utility across a spectrum of applications.  

Looking ahead, our exploration extends beyond the confines 

of the current YOLOv8 architecture. The incorporation of 

advanced algorithms or techniques holds considerable 

promise. Future endeavors will focus on innovative 

approaches to data augmentation and preprocessing, tailored 

meticulously for underwater settings. This refinement aims to 

unlock additional potential, fortifying the model's robustness 

in intricate and challenging conditions. The extensibility of 

our model for transfer learning, coupled with advanced 

techniques like model ensembling, opens avenues for 

heightened accuracy and recall in object detection tasks. 

In conclusion, our research not only advanced the 

understanding of object detection in underwater environments 

but also set the stage for continuous improvement. The 

identified areas for enhancement present exciting 

opportunities for future research, reaffirming our commitment 

to pushing the boundaries of computer vision and contributing 

to impactful technological advancements. 
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