
Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Burak ZAHAL © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 35

Global Journal of Engineering and Technology [GJET].
ISSN: 2583-3359 (Online)

Frequency: Monthly

Published By GSAR Publishers

Journal Homepage Link- https://gsarpublishers.com/journal-gjet-home/

DETECTING AIRPLANES IN UAV IMAGES USING DEEP LEARNING MODEL

BY

Burak ZAHAL
1
, Hüseyin CANBOLAT

2

1,2
Department of Defense Technology, Ankara Yıldırım Beyazıt University

Abstract:

Computer and artificial intelligence technology has been researched and developed since the

1950s. In the 1980s, research efforts in the field of deep learning, a subfield of machine

learning, intensified. Currently, deep learning has provided solutions to many problems.

Object detection technology has made significant progress with the use of algorithms such as

You Only Look Once (YOLO), Open CV, etc., which enable instant detection of multiple

objects in an image. Recently, UAVs have become critically important for countries. The use

of UAVs in important studies is increasing day by day due to their areas of use and tasks.

Real-time operation and the ability to take images of the desired quality according to camera

capabilities are a data source for deep learning studies. This study aims to detect civil and

military aircraft from UAV images using different versions of YOLO deep learning algorithms.

For this purpose, a dataset was first created to train the YOLO deep learning model. Python-

based programming language was used as software for training the model, and different

libraries were used. Images containing different types and categories of aircraft were first

taught to the created model. Then, for verification purposes, images were given to the model

with the relevant codes and the ability to detect the aircraft object was measured. During the

tests, the parameters required for the selection of the appropriate model were changed and

their effects on the system were examined. Considering all these tests, it is estimated that the

use of UAVs will increase and, in parallel, object detection with images obtained from UAVs

will have critical importance in the fields of military, agriculture, health and autonomous

technology.

Index Terms- AI, UAV, artificial intelligence, deep learning, object detection, YOLO

1. INTRODUCTION
Object detection from UAV (Unmanned Aerial Vehicle)

images using deep learning models has gained significant

attention in fields such as defense, agriculture, disaster

management, and environmental monitoring. UAVs can

rapidly survey large areas and collect data from various

altitudes, providing valuable insights. However, object

detection in UAV images comes with specific challenges:

 Complex Backgrounds: Environments like forests,

cities, and oceans can make object differentiation

difficult.

 Variable Resolution: Objects may appear very small

due to high-altitude image capture.

 Viewpoint Variation: Changing flight angles and

perspectives complicate detection.

 Motion and Noise: UAV movement and sensor

noise can affect image quality.

Object detection is a computer vision task that involves

identifying and localizing objects in images or videos. It plays

a crucial role in various applications, including surveillance,

autonomous vehicles, and robotics. Object detection

algorithms are generally classified into two main types:

single-shot detectors and two-stage detectors. One of the

earliest deep learning-based breakthroughs in object detection

was the R-CNN (Regions with CNN features) model,

developed by Ross Girshick and his team at Microsoft

Research in 2014. This model combined region proposal

methods with convolutional neural networks (CNNs) to detect

and localize objects in images effectively. Object detection

algorithms can also be categorized based on how many times

the input image is processed by the network. This distinction

highlights differences in efficiency and accuracy between

various detection models [1].

YOLO (You Only Look Once), developed by Joseph Redmon

and his team, formulates object detection as a regression task

that predicts bounding boxes and associated class

Article History

Received: 15/12/2024

Accepted: 19/12/2024

Published: 21/12/2024

Vol – 3 Issue – 12

PP: - 35-38

https://gsarpublishers.com/journal-gjet-home/

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Burak ZAHAL © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 36

probabilities. Unlike traditional methods, YOLO processes the

entire image at once during inference, allowing it to leverage

the global context for more accurate predictions. Its high

speed makes it ideal for real-time applications.

2. DEEP LEARNING

Deep learning is a machine learning technique within the field

of artificial intelligence that surpasses many traditional

algorithms in tasks like speech and image recognition. It has

become a highly active research area in the machine learning

and pattern recognition communities, achieving significant

success across various applications, including speech

recognition, computer vision, natural language processing,

and numerous industry products. Neural networks are the

foundational technology behind deep learning, enabling the

design of intelligent systems [2].

Figure 2.1 CNN architecture

Three major types of deep learning models are:

1. Convolutional Neural Networks (CNNs): Primarily

used for image-related tasks such as classification,

object detection, and image segmentation.

2. Recurrent Neural Networks (RNNs): Effective in

processing sequential data, commonly applied in

tasks like language modeling, speech recognition,

and time-series forecasting.

3. Transformer Models: Widely used in natural

language processing and computer vision, enabling

applications like machine translation, text

summarization, and image captioning.

As deep learning continues to receive significant attention, its

capabilities are rapidly advancing. It allows systems to

perform complex tasks with greater accuracy and automation.

Application areas like computer vision, image processing,

automated driving, and signal processing are evolving, with

new sub-applications emerging as methods and technologies

improve. For example, computer vision includes tasks such as

image classification, object detection, and semantic

segmentation. As research progresses, deep learning

applications will expand, and previously unexplored areas will

benefit from improved accuracy and efficiency [3].

Deep learning powers numerous applications. For instance, it

is a key technology behind autonomous vehicles, helping

them recognize traffic signs and distinguish pedestrians from

streetlights. It also enables voice control in consumer

electronics such as smartphones, tablets, smart TVs, and

hands-free speakers.

3. YOLO (You Only Look Once)
You Only Look Once (YOLO) is a widely recognized object

detection algorithm known for its high accuracy and fast

processing speed. Its neural network architecture is one of the

best in the field, contributing significantly to its popularity.

Due to its effectiveness, searching for object detection

algorithms on Google often brings up YOLO as the top result

[4]. The YOLO algorithm uses a single Convolutional Neural

Network (CNN) that divides the input image into a grid of

S×S cells. Each grid cell is responsible for predicting a fixed

number of bounding boxes. Along with each bounding box,

the cell also predicts class probabilities, indicating the

likelihood of specific objects (such as people, cars, or dogs)

being present.

The main concept behind YOLO is that each grid cell can

detect multiple objects within its region. For each detected

object, the algorithm predicts its class and location, including

the center coordinates and the bounding box's width and

height. This unified method allows for fast and efficient object

detection.

One of YOLO's greatest advantages is its rapid inference

speed, making it ideal for real-time image processing. This

makes it particularly suitable for applications such as video

surveillance, autonomous vehicles, and augmented reality.

Additionally, YOLO's simple architecture and low training

data requirements make it easy to implement and adapt to

various tasks. Despite its strengths, YOLO has some

limitations. It may struggle with detecting small objects and

can face challenges in performing fine-grained object

classification. Nonetheless, YOLO remains a powerful tool

for object detection, enabling new possibilities for researchers

and practitioners alike. As computer vision continues to

advance, it will be exciting to see how YOLO and other object

detection algorithms evolve, overcoming their current

limitations and expanding their capabilities. In general, the

YOLO algorithm was used in the study because YOLO is the

easiest and most useful deep learning model in the field of

object detection [5].

4. TEST PHASE AND FINDING
 Creating a dataset for YOLO involves collecting relevant

images or videos and organizing them into folders like train,

valid, and test. Afterward, data labeling is done using tools

such as LabelImg or Roboflow, where bounding boxes are

created around objects of interest. Each labeled image

generates a text file with object class IDs and normalized

bounding box coordinates in YOLO format. Next, the Darknet

framework is set up by cloning its repository and compiling

the code with GPU and OpenCV support if needed. The

model configuration files, including yolov4.cfg, obj.data,

obj.names, and text files listing image paths, are prepared.

After adjusting parameters such as batch size, subdivisions,

and filter values in the configuration file, model training

begins using a pre-trained weight file like “yolov4.conv.137.”

The training process periodically saves weights and calculates

performance metrics such as mean Average Precision (mAP).

Once the training is complete, the model is validated using

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Burak ZAHAL © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 37

evaluation commands to assess its precision, recall, and mAP

scores. Finally, the trained model is tested on images or

videos for real-time object detection.

In the testing phase of our study, Google Colab, a free cloud-

based Jupyter Notebook environment provided by Google

since 2017, was initially planned for use. Colab supports

machine learning and deep learning model training on CPUs,

GPUs, and TPUs. It enables access to high-performance

computing environments, facilitating data-intensive tasks.

Data is processed from a cloud storage space and re-uploaded

after the study using appropriate code implementations.

During the training process, all YOLO versions were

configured and tested on Google Colab. The platform used

Python 3.10.12 with a Tesla T4 GPU, offering approximately

15GB of system memory. However, during YOLOv3 training,

about 10GB (2/3 of the memory) was utilized, causing system

overload, slow performance, and hardware overheating.

To achieve more accurate results aligned with the study

objectives, advanced YOLO versions such as YOLOv5s,

YOLOv5x, YOLOv8x, and YOLOv10x were selected. Since

these versions required more memory and processing power,

the environment was shifted to a computer running the

Ubuntu operating system. Python 3.8.10 and PyTorch 2.4.1

were installed to support the algorithms. This high-

performance platform provided faster and more stable

training, ensuring error-free results.

To achieve accurate predictions and fast results during testing,

reference values were set with an image size of 640 pixels, a

batch size of 10, and 50 iterations per epoch.

In YOLO, key evaluation metrics such as metrics/precision,

metrics/recall, mAP (Mean Average Precision), and

mAP@0.5:0.95 are used to assess the model's object detection

performance. Each metric provides a unique perspective on

the model's effectiveness:

 metrics/precision: Indicates how accurate the

model's predictions are by measuring the proportion

of correct positive detections.

 metrics/recall: Reflects the model's ability to detect

all relevant objects, showing how many actual

objects were correctly identified.

 mAP@0.5: Evaluates detection accuracy across all

classes using a fixed Intersection over Union (IoU)

threshold of 0.5.

 mAP@0.5:0.95: Provides a more comprehensive

evaluation by averaging the model's performance

across multiple IoU thresholds, offering a deeper

insight into detection quality.

These metrics collectively help determine the overall

effectiveness of the YOLO model in object detection tasks. In

our study, object detection was conducted using the YOLO

deep learning model. Training was performed across different

YOLO versions using the same parameters for comparative

evaluation. Parameter adjustments within the same version

were also explored. Training times varied based on dataset

size, image quality, and model version efficiency, ranging

from 23 minutes to 9 hours. The shortest training time

occurred with 50 validation images in YOLOv3, while the

longest was with 750 images in YOLOv10x.

 The first test was done with YOLOv3 by changing

the number of validation images. The reference

value was 82 and the validation image number was

reduced to 50 and the test was repeated.

 Our next test was the model training done with

YOLOv5s and YOLOv5x. In this training, the

epoch value was increased from 50 to 100 and the

effect of the epoch value on object detection was

observed.

 In the third stage of the test, the batch number was

selected as 5 and 10 with YOLOv8x.

 The last test preferred for the study was done with

YOLOv10x. In this test, the image pixel value was

increased from 640 to 750 and the comparison was

made.

Table 4.1 Test Results

Version\Parameter metrics/mAP_0.5:0.95 metrics/precision metrics/recall

yolov3(82 Image) 0.50715 0.94794 0.67021

yolov3(50 Image) 0.59017 0.88941 0.8427

yolov5s (50 Epoch) 0.46454 0.89217 0.71536

yolov5s (100 Epoch) 0.51157 0.89031 0.72959

yolov5x (50 Epoch) 0.5968 0.948 0.75111

yolov8x (10 Batch) 0.48633 0.83032 0.67416

yolov8x (10 Batch) 0.48874 0.88031 0.64794

yolov10x (640 px) 0.48729 0.82607 0.59925

yolov10x (750 px) 0.52208 0.8958 0.64794

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Burak ZAHAL © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 38

5. CONCLUSION
This study focuses on object detection using UAV images,

which are crucial for national security. Due to restrictions on

capturing images of sensitive locations like airports and

military airfields, the dataset size was limited. The study

evaluated different YOLO model versions (YOLOv3,

YOLOv5, YOLOv8, and YOLOv10) using the same dataset.

The tests also examined the effectiveness of reference

parameters like epoch, precision, recall, and mAP@0.5:0.95,

along with dataset size, image resolution, and hardware

quality. The best performance was achieved with YOLOv5x

using 50 epochs.

Test results revealed variations in model performance, with

YOLOv5x achieving the highest mAP@0.5:0.95 value of

0.596, while YOLOv8 underperformed. The precision value

for YOLOv5x was 0.948, indicating high accuracy in object

detection. YOLOv3 showed a higher recall (0.894) with fewer

validation images compared to YOLOv5x (0.85), suggesting

that simpler versions are better at detecting objects in less

complex images. The study emphasized the importance of

selecting correct parameters like dataset size, epoch, image

dimensions, and batch size to avoid poor performance, high

costs, and long training times.

REFERENCES
1. Kundu R., “YOLO: Algorithm for Object Detection

Explained [+Examples]”, January 2023, Accessed

10 December 2024,

<https://www.v7labs.com/blog/yolo-object-

detection>.

2. Mishra C., Gupta D. L., “Deep Machine Learning

and Neural Networks: An Overview”, IAES

International Journal of Artificial Intelligence (IJ-

AI) Vol. 6, No. 2, June 2017, pp. 66~73,

<DOI:10.11591/ijai.v6.i2.pp66-73>.

3. “What Is Deep Learning?”, Accessed 10 December

2024,

<https://www.mathworks.com/discovery/deep-

learning.html>.

4. Zvornicanin E., “What Is YOLO Algorithm?”,

March 2018, Accessed 12 December 2024,

<https://www.baeldung.com/cs/yolo-algorithm>.

5. Dey I., “What Is YOLO Algorithm?”, 12 July 2023,

Accessed 12 December 2024,

<https://medium.com/@ishudey11032002/what-is-

yolo-algorithm-ef5a3326510b>.

6. Karpuram, “YOLO Algorithm for Custom Object

Detection”, 25 June 2024, Accessed 12 December

2024,

<https://www.analyticsvidhya.com/blog/2022/06/yo

lo-algorithm-for-custom-object-detection/>.

