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Abstract:  

Computer and artificial intelligence technology has been researched and developed since the 

1950s. In the 1980s, research efforts in the field of deep learning, a subfield of machine 

learning, intensified. Currently, deep learning has provided solutions to many problems. 

Object detection technology has made significant progress with the use of algorithms such as 

You Only Look Once (YOLO), Open CV, etc., which enable instant detection of multiple 

objects in an image. Recently, UAVs have become critically important for countries. The use 

of UAVs in important studies is increasing day by day due to their areas of use and tasks. 

Real-time operation and the ability to take images of the desired quality according to camera 

capabilities are a data source for deep learning studies. This study aims to detect civil and 

military aircraft from UAV images using different versions of YOLO deep learning algorithms. 

For this purpose, a dataset was first created to train the YOLO deep learning model. Python-

based programming language was used as software for training the model, and different 

libraries were used. Images containing different types and categories of aircraft were first 

taught to the created model. Then, for verification purposes, images were given to the model 

with the relevant codes and the ability to detect the aircraft object was measured. During the 

tests, the parameters required for the selection of the appropriate model were changed and 

their effects on the system were examined. Considering all these tests, it is estimated that the 

use of UAVs will increase and, in parallel, object detection with images obtained from UAVs 

will have critical importance in the fields of military, agriculture, health and autonomous 

technology. 

Index Terms- AI, UAV, artificial intelligence, deep learning, object detection, YOLO  

1. INTRODUCTION 
Object detection from UAV (Unmanned Aerial Vehicle) 

images using deep learning models has gained significant 

attention in fields such as defense, agriculture, disaster 

management, and environmental monitoring. UAVs can 

rapidly survey large areas and collect data from various 

altitudes, providing valuable insights. However, object 

detection in UAV images comes with specific challenges: 

 Complex Backgrounds: Environments like forests, 

cities, and oceans can make object differentiation 

difficult. 

 Variable Resolution: Objects may appear very small 

due to high-altitude image capture. 

 Viewpoint Variation: Changing flight angles and 

perspectives complicate detection. 

 Motion and Noise: UAV movement and sensor 

noise can affect image quality. 

Object detection is a computer vision task that involves 

identifying and localizing objects in images or videos. It plays 

a crucial role in various applications, including surveillance, 

autonomous vehicles, and robotics. Object detection 

algorithms are generally classified into two main types: 

single-shot detectors and two-stage detectors. One of the 

earliest deep learning-based breakthroughs in object detection 

was the R-CNN (Regions with CNN features) model, 

developed by Ross Girshick and his team at Microsoft 

Research in 2014. This model combined region proposal 

methods with convolutional neural networks (CNNs) to detect 

and localize objects in images effectively. Object detection 

algorithms can also be categorized based on how many times 

the input image is processed by the network. This distinction 

highlights differences in efficiency and accuracy between 

various detection models [1]. 

YOLO (You Only Look Once), developed by Joseph Redmon 

and his team, formulates object detection as a regression task 

that predicts bounding boxes and associated class 
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probabilities. Unlike traditional methods, YOLO processes the 

entire image at once during inference, allowing it to leverage 

the global context for more accurate predictions. Its high 

speed makes it ideal for real-time applications. 

2. DEEP LEARNING 

Deep learning is a machine learning technique within the field 

of artificial intelligence that surpasses many traditional 

algorithms in tasks like speech and image recognition. It has 

become a highly active research area in the machine learning 

and pattern recognition communities, achieving significant 

success across various applications, including speech 

recognition, computer vision, natural language processing, 

and numerous industry products. Neural networks are the 

foundational technology behind deep learning, enabling the 

design of intelligent systems [2]. 

 

Figure 2.1 CNN architecture 

Three major types of deep learning models are: 

1. Convolutional Neural Networks (CNNs): Primarily 

used for image-related tasks such as classification, 

object detection, and image segmentation. 

2. Recurrent Neural Networks (RNNs): Effective in 

processing sequential data, commonly applied in 

tasks like language modeling, speech recognition, 

and time-series forecasting. 

3. Transformer Models: Widely used in natural 

language processing and computer vision, enabling 

applications like machine translation, text 

summarization, and image captioning. 

As deep learning continues to receive significant attention, its 

capabilities are rapidly advancing. It allows systems to 

perform complex tasks with greater accuracy and automation. 

Application areas like computer vision, image processing, 

automated driving, and signal processing are evolving, with 

new sub-applications emerging as methods and technologies 

improve. For example, computer vision includes tasks such as 

image classification, object detection, and semantic 

segmentation. As research progresses, deep learning 

applications will expand, and previously unexplored areas will 

benefit from improved accuracy and efficiency [3]. 

Deep learning powers numerous applications. For instance, it 

is a key technology behind autonomous vehicles, helping 

them recognize traffic signs and distinguish pedestrians from 

streetlights. It also enables voice control in consumer 

electronics such as smartphones, tablets, smart TVs, and 

hands-free speakers. 

 

3. YOLO (You Only Look Once) 
You Only Look Once (YOLO) is a widely recognized object 

detection algorithm known for its high accuracy and fast 

processing speed. Its neural network architecture is one of the 

best in the field, contributing significantly to its popularity. 

Due to its effectiveness, searching for object detection 

algorithms on Google often brings up YOLO as the top result 

[4]. The YOLO algorithm uses a single Convolutional Neural 

Network (CNN) that divides the input image into a grid of 

S×S cells. Each grid cell is responsible for predicting a fixed 

number of bounding boxes. Along with each bounding box, 

the cell also predicts class probabilities, indicating the 

likelihood of specific objects (such as people, cars, or dogs) 

being present. 

The main concept behind YOLO is that each grid cell can 

detect multiple objects within its region. For each detected 

object, the algorithm predicts its class and location, including 

the center coordinates and the bounding box's width and 

height. This unified method allows for fast and efficient object 

detection. 

One of YOLO's greatest advantages is its rapid inference 

speed, making it ideal for real-time image processing. This 

makes it particularly suitable for applications such as video 

surveillance, autonomous vehicles, and augmented reality. 

Additionally, YOLO's simple architecture and low training 

data requirements make it easy to implement and adapt to 

various tasks. Despite its strengths, YOLO has some 

limitations. It may struggle with detecting small objects and 

can face challenges in performing fine-grained object 

classification. Nonetheless, YOLO remains a powerful tool 

for object detection, enabling new possibilities for researchers 

and practitioners alike. As computer vision continues to 

advance, it will be exciting to see how YOLO and other object 

detection algorithms evolve, overcoming their current 

limitations and expanding their capabilities. In general, the 

YOLO algorithm was used in the study because YOLO is the 

easiest and most useful deep learning model in the field of 

object detection [5]. 

4. TEST PHASE AND FINDING 
 Creating a dataset for YOLO involves collecting relevant 

images or videos and organizing them into folders like train, 

valid, and test. Afterward, data labeling is done using tools 

such as LabelImg or Roboflow, where bounding boxes are 

created around objects of interest. Each labeled image 

generates a text file with object class IDs and normalized 

bounding box coordinates in YOLO format. Next, the Darknet 

framework is set up by cloning its repository and compiling 

the code with GPU and OpenCV support if needed. The 

model configuration files, including yolov4.cfg, obj.data, 

obj.names, and text files listing image paths, are prepared. 

After adjusting parameters such as batch size, subdivisions, 

and filter values in the configuration file, model training 

begins using a pre-trained weight file like “yolov4.conv.137.” 

The training process periodically saves weights and calculates 

performance metrics such as mean Average Precision (mAP). 

Once the training is complete, the model is validated using 
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evaluation commands to assess its precision, recall, and mAP 

scores. Finally, the trained model is tested on images or 

videos for real-time object detection. 

In the testing phase of our study, Google Colab, a free cloud-

based Jupyter Notebook environment provided by Google 

since 2017, was initially planned for use. Colab supports 

machine learning and deep learning model training on CPUs, 

GPUs, and TPUs. It enables access to high-performance 

computing environments, facilitating data-intensive tasks. 

Data is processed from a cloud storage space and re-uploaded 

after the study using appropriate code implementations. 

During the training process, all YOLO versions were 

configured and tested on Google Colab. The platform used 

Python 3.10.12 with a Tesla T4 GPU, offering approximately 

15GB of system memory. However, during YOLOv3 training, 

about 10GB (2/3 of the memory) was utilized, causing system 

overload, slow performance, and hardware overheating. 

To achieve more accurate results aligned with the study 

objectives, advanced YOLO versions such as YOLOv5s, 

YOLOv5x, YOLOv8x, and YOLOv10x were selected. Since 

these versions required more memory and processing power, 

the environment was shifted to a computer running the 

Ubuntu operating system. Python 3.8.10 and PyTorch 2.4.1 

were installed to support the algorithms. This high-

performance platform provided faster and more stable 

training, ensuring error-free results. 

To achieve accurate predictions and fast results during testing, 

reference values were set with an image size of 640 pixels, a 

batch size of 10, and 50 iterations per epoch. 

In YOLO, key evaluation metrics such as metrics/precision, 

metrics/recall, mAP (Mean Average Precision), and 

mAP@0.5:0.95 are used to assess the model's object detection 

performance. Each metric provides a unique perspective on 

the model's effectiveness: 

 metrics/precision: Indicates how accurate the 

model's predictions are by measuring the proportion 

of correct positive detections. 

 metrics/recall: Reflects the model's ability to detect 

all relevant objects, showing how many actual 

objects were correctly identified. 

 mAP@0.5: Evaluates detection accuracy across all 

classes using a fixed Intersection over Union (IoU) 

threshold of 0.5. 

 mAP@0.5:0.95: Provides a more comprehensive 

evaluation by averaging the model's performance 

across multiple IoU thresholds, offering a deeper 

insight into detection quality. 

These metrics collectively help determine the overall 

effectiveness of the YOLO model in object detection tasks. In 

our study, object detection was conducted using the YOLO 

deep learning model. Training was performed across different 

YOLO versions using the same parameters for comparative 

evaluation. Parameter adjustments within the same version 

were also explored. Training times varied based on dataset 

size, image quality, and model version efficiency, ranging 

from 23 minutes to 9 hours. The shortest training time 

occurred with 50 validation images in YOLOv3, while the 

longest was with 750 images in YOLOv10x. 

 The first test was done with YOLOv3 by changing 

the number of validation images. The reference 

value was 82 and the validation image number was 

reduced to 50 and the test was repeated. 

 Our next test was the model training done with 

YOLOv5s and YOLOv5x. In this training, the 

epoch value was increased from 50 to 100 and the 

effect of the epoch value on object detection was 

observed. 

 In the third stage of the test, the batch number was 

selected as 5 and 10 with YOLOv8x. 

 The last test preferred for the study was done with 

YOLOv10x. In this test, the image pixel value was 

increased from 640 to 750 and the comparison was 

made. 

Table 4.1 Test Results 

Version\Parameter  metrics/mAP_0.5:0.95 metrics/precision metrics/recall 

yolov3(82 Image) 0.50715 0.94794 0.67021 

yolov3(50 Image) 0.59017 0.88941 0.8427 

yolov5s (50 Epoch) 0.46454 0.89217 0.71536 

yolov5s (100 Epoch) 0.51157 0.89031 0.72959 

yolov5x (50 Epoch) 0.5968 0.948 0.75111 

yolov8x (10 Batch) 0.48633 0.83032 0.67416 

yolov8x (10 Batch) 0.48874 0.88031 0.64794 

yolov10x (640 px) 0.48729 0.82607 0.59925 

yolov10x (750 px) 0.52208 0.8958 0.64794 
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5. CONCLUSION 
This study focuses on object detection using UAV images, 

which are crucial for national security. Due to restrictions on 

capturing images of sensitive locations like airports and 

military airfields, the dataset size was limited. The study 

evaluated different YOLO model versions (YOLOv3, 

YOLOv5, YOLOv8, and YOLOv10) using the same dataset. 

The tests also examined the effectiveness of reference 

parameters like epoch, precision, recall, and mAP@0.5:0.95, 

along with dataset size, image resolution, and hardware 

quality. The best performance was achieved with YOLOv5x 

using 50 epochs. 

 

Test results revealed variations in model performance, with 

YOLOv5x achieving the highest mAP@0.5:0.95 value of 

0.596, while YOLOv8 underperformed. The precision value 

for YOLOv5x was 0.948, indicating high accuracy in object 

detection. YOLOv3 showed a higher recall (0.894) with fewer 

validation images compared to YOLOv5x (0.85), suggesting 

that simpler versions are better at detecting objects in less 

complex images. The study emphasized the importance of 

selecting correct parameters like dataset size, epoch, image 

dimensions, and batch size to avoid poor performance, high 

costs, and long training times. 
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