
Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 12

Global Journal of Engineering and Technology [GJET].
ISSN: 2583-3359 (Online)

Frequency: Monthly

Published By GSAR Publishers

Journal Homepage Link- https://gsarpublishers.com/journal-gjet-home/

A method of increasing the reliability and scalability of web applications using distributed

caching

By

Volodymyr Kozub

National Aviation University 03058, 1 Liubomyr Husar Ave., Kyiv, Ukraine https://orcid.org/0009-0007-6740-5300

Abstract

This paper presents a new approach to improving the reliability and scalability of web

applications by implementing distributed caching. Traditional centralized caching systems are

often limited by a single point of failure and limited scalability, which makes them vulnerable to

heavy loads and rapid traffic growth. To solve these problems, the proposed method uses a

distributed architecture with multiple proxy servers that dynamically balance the load and

replicate cache data across the network. This design provides high availability due to failover

capabilities, where backup servers can maintain continuous service during individual server

failures. The distributed caching approach simplifies scaling, allowing additional servers to be

seamlessly integrated to meet growing user demand without significant infrastructure changes.

Experimental results show that this method improves response time, reduces server downtime,

and optimizes resource utilization, making it a reliable solution for modern, high-traffic web

services. Traditional caching methods, such as centralized caching, often face load and single

point of failure issues, which limits the system's ability to quickly adapt to changes in traffic and

requests. To address the issues mentioned above, the distributed caching proxy model proposes to

distribute cached content across multiple servers, increasing availability by eliminating a single

point of failure. It also improves reliability by balancing the load across multiple servers,

preventing any single server from being overloaded.

Keywords: distributed caching, web application scalability, centralized caching, load balancing

1. Introduction
Ensuring reliability and scalability of distributed systems is a

challenge for modern web applications. One study emphasizes

that key mechanisms such as fault detection, replication, and

monitoring are essential to maintain high availability in cloud

environments (Mesbahi et al., 2018). These techniques align

well with distributed caching strategies, where replication

plays an important role in maintaining service continuity

across multiple nodes.

Research on reactive microservices for increasing availability

in IoT applications has shown that distributed systems can be

more resilient than centralized ones. In such systems,

microservices can dynamically adapt to changes, making them

highly effective in environments that require constant

availability (Santana et al., 2020). Such adaptive behavior is

necessary in distributed caching, where node failures must be

handled without affecting overall system performance.

A reinforcement learning approach to optimize distributed

caching for IoT environments has been investigated,

demonstrating how intelligent caching can reduce latency and

improve response time in edge computing scenarios (Tian et

al., 2021). The ability to dynamically tune caching methods is

key to ensuring that data is always available, even when

demand fluctuates. This makes this strategy directly

applicable to web applications that depend on distributed

caching.

In 5G cloud-based mobile networks, caching-as-a-service

models have been developed to improve performance and

cost-effectiveness. These models emphasize the importance of

dynamic caching solutions that scale according to user

demand while minimizing operational costs (Niyato et al.,

2020). Distributed caching aligns with this approach as it

allows for scalable solutions. They reduce network congestion

and improve data retrieval time.

The analysis of caching requests between network nodes

emphasizes the role of distributed caching in load balancing

and improving access times (Pasyeka et al., 2019). By

distributing cache memory across multiple servers, web

applications can avoid performance limitations. This provides

faster response times and higher reliability, especially during

traffic spikes.

Article History

Received: 05/12/2024

Accepted: 16/12/2024

Published: 18/12/2024

Vol – 3 Issue – 12

PP: - 12-18

https://gsarpublishers.com/journal-gjet-home/

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 13

The impact of caching on the energy consumption of

progressive web applications (PWAs) has been studied and

found that efficient caching mechanisms can significantly

reduce energy consumption while maintaining performance

(Malavolta & Kuppusamy. 2020). This finding is important

for large-scale distributed caching systems, where energy

efficiency becomes a significant factor in maintaining

performance at lower operating costs.

Distributed caching algorithms have also been applied to

streaming videos. They have been shown to optimize delivery

and improve user experience by reducing latency (Poularakis

et al., 2019). The use of intelligent caching strategies in

media-intensive applications illustrates how distributed

systems can scale efficiently while maintaining quality of

service. A comparative analysis of popularity-based caching

strategies has demonstrated that these methods improve

content delivery by adapting cache memory based on user

demand (Naeem et al., 2020). This strategy is effective for

web applications that handle large amounts of traffic, where

distributed caching can optimize resource allocation. Also,

ensure that frequently accessed data is always easily

accessible.

The analysis shows that distributed caching is an effective

way to improve the reliability and scalability of web

applications. By using replication, load balancing, and

dynamic resource management, distributed systems can

respond flexibly to failures and scale efficiently, making them

the best choice for modern web environments.

2. Methodology
The methodology covers several key aspects: analyzing

existing caching topologies, defining and testing architectural

approaches to distributed caching, and comparing their

effectiveness with centralized solutions. This makes it

possible to assess the impact of each topology on the

performance, reliability, and scalability of web applications

under high load conditions.

The main stages of the methodology include:

1. Selection and analysis of topologies: first, existing

caching approaches (centralized, distributed) and

their variations in the context of web applications

are considered. Each topology is evaluated in terms

of its advantages and disadvantages to ensure

reliability and scalability.

2. Designing a test environment: to test the selected

topologies, an environment is created that simulates

real-world load conditions on the web application.

This includes setting up servers, virtual machines,

and proxy programs for data caching.

3. Define key parameters and metrics: set the

parameters by which each topology will be

evaluated: availability, reliability, scalability,

system response time, and ability to withstand large

volumes of simultaneous requests. These metrics

are used to compare the performance and stability of

each approach.

4. Testing of caching topologies: Each topology is

tested to assess its ability to handle heavy load and

ensure service continuity. Tests cover scenarios

with a large number of simultaneous users, different

levels of requests, and system load.

5. Formulation of recommendations: based on the

results obtained, recommendations are made on the

use of different topologies depending on the

requirements for the web application, the type of

traffic and the required level of scalability and

reliability.

We will test the system for different topologies.

The centralized architecture consists of an ISP connection, a

modem, a router, and a proxy server that is responsible for

caching (Figure 1).

All client requests go through this single proxy server, which

caches web content to reduce bandwidth usage and speed up

response times. However, since this server is a single point of

caching, it is a critical point of failure.

Figure 1. Physical topology with a centralized cache

This approach has the following features:

1. Single point of access to the cache: all client

requests go to one cache server, which makes it easy

to control and administer the caching system.

2. Simplified management and monitoring: A single

caching server greatly simplifies configuration,

monitoring, and maintenance processes. This

reduces the need to coordinate multiple servers and

makes it easy to make changes.

3. Scalability issues: there is a limited ability to scale,

as the performance of a single server quickly

decreases with the number of requests. Therefore,

this solution is suitable for small systems with

predictable and relatively low traffic.

4. Single Point of Failure: If the cache server fails, the

entire system becomes unavailable, which can

negatively affect the availability of the web

application. This is especially critical for highly

loaded web applications where stability and

reliability are key factors.

During the test, a connection was established between the ISP

and the modem, and then the modem was connected to the

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 14

router. The router, in turn, is connected to a centralized proxy

server that serves as an intermediary for all requests from

customers. Clients access the Internet through this proxy

server. Performance metrics, such as response time and server

load, are monitored to assess the ability of the centralized

system to handle increasing traffic.

A distributed caching system uses a more robust physical

topology (Figure 2), where multiple proxy servers are

deployed to distribute the caching load across multiple nodes

to improve performance and reliability. The components are

connected in a distributed manner. This ensures that if one

proxy server fails, the system can seamlessly redirect traffic

through another server, thereby maintaining availability.

Figure 2. Physical topology with distributed cache

Each proxy server is connected to a central network switch,

which is connected to a router and modem. This topology not

only improves reliability by distributing the cache, but also

supports scalability by allowing more proxy servers to be

added as needed. The distributed cache system is designed to

avoid the limitations and points of failure typical of a

centralized architecture.

Features of the distributed cache topology include:

1. Load balancing: Cached data is distributed across

multiple servers, which allows for more efficient

load balancing on each individual node. Requests

are distributed across servers using balancing

algorithms, such as Nginx's ip_hash, which ensure

that client requests are consistently redirected to

specific servers.

2. High availability: the problem of a single point of

failure is eliminated, as requests can be redirected to

other nodes if one server fails. This ensures

continuity of customer service even in the event of

individual node failures.

3. Scalability: Caching can easily add new servers to

support growing traffic or requests, allowing it to

remain stable even at peak loads. New servers are

integrated into the system dynamically, expanding

the overall network capacity.

4. Geographic distribution of the cache: you can place

servers in different geographical locations, which

reduces access delays for customers, providing

faster content delivery by storing the cache closer to

users.

5. Reduced latency and increased processing speed: by

distributing cached content and processing requests

on different servers, latency is reduced and overall

processing speed is increased.

For server virtualization, the star topology is used, where all

server nodes are connected to each other through a central

switch using UTP cables (Figure 3).

Figure 3. Network topology with virtualization

Features of this topology:

1. Centralized management and control: the central

server manages the operation of the peripheral

nodes, which allows you to maintain a single point

of control over all virtualization processes,

including caching, load balancing and redundancy.

2. Scalability through virtual machines: new virtual

machines can be easily added to edge nodes to

expand the system as demand grows. Virtual

machines can quickly adapt to changes in workload,

providing high flexibility.

3. Load balancing and redundancy: the central server

can distribute requests among the peripheral nodes

to efficiently use resources and reduce the risk of

overload. If one of the nodes fails, requests are

automatically redirected to other nodes, which

ensures high reliability.

4. Flexible resource management: virtualized nodes

can perform different functions (caching, query

processing, data storage) depending on the load,

allowing you to customize the system to meet

current requirements. The central node monitors and

allocates resources between nodes according to

current needs, optimizing system performance.

5. Isolation and security: Each node of the star

performs its tasks in isolation, which increases the

security of the system. In case of a threat to one

node, the others remain protected, reducing the

likelihood of failure propagation.

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 15

This configuration ensures efficient processing of requests on

all nodes of the system, reducing the likelihood of restrictions

and increasing overall system performance.

To implement the caching system, key software components

were installed and configured on each server. The Squid

proxy program was deployed on each virtual machine to

cache and process client requests through a proxy server,

which provides fast access to popular content and distributes

the load across multiple servers. Using local caches at the

level of each virtual machine, the system is able to respond

quickly to repetitive requests, which reduces latency and

optimizes the use of network and server resources.

In addition, Squid supports bandwidth optimization functions

that reduce the amount of traffic transmitted between clients

and primary servers, ensuring efficient use of network

resources. In the event of a failure of one of the virtual

machines, the others continue to serve requests, ensuring

system continuity and increasing its availability. This

distributed architecture also makes it easy to scale: as the

number of users or traffic grows, you can easily add new

virtual machines with Squid configured to quickly increase

overall throughput.

This approach not only improves the reliability and resilience

of the system, but also provides greater flexibility in

configuring cache policies for individual content segments,

which allows you to optimize application performance in

dynamic web environments. As a result, using Squid as part of

distributed caching is becoming one of the most effective

methods of increasing the performance and adaptability of

web applications, allowing you to quickly respond to changes

in traffic volume and maintain stability even during peak

loads.

Squid was chosen for its flexibility and support for both

centralized and distributed caching environments. In addition

to Squid, an Nginx web server was configured on each server

to act as a reverse proxy and load balancer.

The ISO domain serves as a repository that contains the

necessary ISO images needed to install operating systems on

virtual machines. In this study, CentOS 7 was selected and the

ISO was installed on oVirt node-1. The ISO installation

process ensures that the same operating system environment is

installed on each server node. This ensures consistency across

all virtualized instances..

Additionally, a reverse proxy setting was implemented as an

intermediary between client requests and web servers. The

reverse proxy helps to distribute traffic efficiently. It also

ensures that user requests are directed to the correct server,

optimizing response time and ensuring uninterrupted

operation.

The system includes configurations for both forward and

reverse DNS zones. The forward zone is responsible for

mapping domain names to IP addresses when a client makes a

request. This process allows the server to find the appropriate

IP address associated with a particular domain. Reverse zone,

on the other hand, resolves IP addresses back to domain

names. This is necessary for registration, tracking, and

ensuring accurate processing of client requests.

For load balancing and caching, an Nginx server was installed

on each virtual machine. It functions as a reverse proxy,

HTTP cache, and load balancer, playing a key role in

managing web traffic. The configuration uses the ip_hash

algorithm, a static scheduling method that ensures that

requests from the same client are consistently directed to the

same server. This method is effective for maintaining session

persistence and processing large volumes of requests, as it

evenly distributes the load between servers.

Figure 4 illustrates the use of the IP hashing method in the

Nginx configuration. It shows how the algorithm assigns

client requests to specific servers, maintaining consistency

and reducing latency.

Figure 4. Visualization of the hashing mechanism

The combination of DNS, reverse proxy, and Nginx

configuration allows the system to efficiently manage traffic,

distribute the load between multiple proxy servers, and

provide fast domain name and IP address resolution.

3. Results and Discussion
Figure 5 shows the results of the availability testing of a

distributed caching system with 3000 concurrent users. This

graph illustrates how the distributed system maintains high

availability despite the increase in the number of user

requests.

Figure 5. Results of testing the availability of a distributed

system for 3000 users

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 16

At the same time, system availability remains unchanged for

all 3000 users, demonstrating the effectiveness of the failover

mechanism. The distributed architecture eliminates the

problem of a single point of failure, ensuring that backup

servers seamlessly take over when needed. The system's

ability to handle a large number of requests without downtime

is a clear advantage over centralized systems.

Figure 6 shows the results of testing the reliability of a

distributed cache system for a different number of users.

Figure 6. Results of reliability testing of a distributed system

for 3000 users

The reliability of the system implies its ability to consistently

process user requests without errors and delays. In a

distributed system, proxy servers work in parallel. This means

that several servers can process different requests at the same

time, reducing the likelihood of overloading any single server.

The graph shows that the distributed system continues to

process requests efficiently even under heavy loads. The

lower failure rate compared to centralized systems can be

explained by the load balancing features of the distributed

architecture, where incoming requests are distributed among

several nodes. This distribution not only increases fault

tolerance but also improves the overall performance of the

cache system.

Figure 7 shows the results of scalability testing of a

distributed system, this time with 5000 users. Scalability

refers to how well a system can expand to handle increasing

traffic without sacrificing performance. In distributed caching

systems, additional proxies can be added dynamically to

handle more traffic.

Figure 7. Scalability testing results of a distributed system for

5000 users

The graph demonstrates that the distributed caching system

scales efficiently, maintaining low response times and

minimizing errors as the number of users increases. This

performance is achieved thanks to a flexible architecture that

makes it easy to integrate new servers into the network. The

distributed cache can grow with user demand, making it

highly adaptable to web environments with fluctuating traffic.

In this case, the connection was lost. The single proxy server

failed because the system had no backup or failover

mechanism. This highlights a major drawback of centralized

caching systems - they rely entirely on a single server to

handle all traffic. If this server goes down, the entire system

becomes unavailable and all user requests go unprocessed.

Figure 8 shows the results of reliability testing of a centralized

system with 3000 users. The centralized proxy server tries to

maintain reliability under high load, which leads to delays and

an increase in the number of errors. When one server handles

all requests, the system quickly becomes overloaded, which

leads to poor performance.

Figure 8. Reliability testing results of a centralized system for

3000 users

As the number of users grows, centralized caching faces

significant challenges, as seen in the graph. This confirms the

idea that centralized caching is less suitable for environments

with heavy or unpredictable traffic. Figure 9 shows the results

of testing the scalability of a system built on a centralized

architecture and serving 5000 users. As the number of users

increases, the centralized caching system cannot scale

effectively. A single proxy server becomes overloaded,

resulting in slower response times and more frequent errors.

Unlike distributed systems, where additional servers can be

connected to manage growing traffic, centralized systems are

limited by the capabilities of a single node.

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 17

Figure 9. Scalability testing results of a centralized system for

5000 users

The graph shows a sharp drop in performance with an

increase in the number of users, which emphasizes the main

drawback of centralized caching - it is not designed to scale

effectively. The inability to adapt to growing demand makes

centralized systems less favorable for modern web services.

After creating centralized and distributed caching systems,

experiments were conducted to compare their performance in

terms of availability, reliability, and scalability.

The first comparison focused on availability. In a centralized

caching system, a single point of failure posed a significant

risk. When the primary server went down, the entire system

became unavailable because there were no backup servers to

replace it. This led to significant downtime and negatively

impacted overall system performance. In contrast, a

distributed caching system worked much better in this regard.

By distributing the cache across multiple servers, the system

could continue to serve requests even when one or more

servers went down. This failover mechanism ensured minimal

disruption and significantly increased availability. This is

evidenced by the significantly lower average time of the

distributed system. Detailed results can be seen in Table 1.

Table 1. Results of system comparison (experiment 1)

Parameters Centralized

(average) / ms

Distributed

(average) / ms

Availability х 2

Reliability 7 2

Scalability 7 2

When assessing reliability, the centralized system experienced

difficulties with high traffic loads. As the number of requests

increased, the single server became overloaded, resulting in

longer response times and an increase in the number of errors.

This limitation was inherent in the centralized architecture,

where all requests were processed by a single node, creating a

bottleneck. On the other hand, the distributed system was

more efficient in handling the same traffic load. The ability to

distribute requests across multiple nodes allowed for better

load balancing, faster response times, and increased overall

system reliability. The distributed system consistently

outperformed the centralized system both in terms of response

time and error rate (Table 2).

Table 2. Results of system comparison (experiment 2)

Parameters

Centralized

(average) / ms

Distributed

(average) / ms

Availability Х 4

Reliability 9 3

Scalability 7 5

Scalability was another key area where the distributed system

showed clear advantages. With a centralized caching system,

scaling the system to serve a growing number of users was a

challenge. As the number of users increased, a single server

quickly reached its capacity, and upgrading the system

required a significant investment in hardware. In contrast, the

distributed system was designed to be easily scalable by

adding additional cache nodes. This flexibility allowed the

distributed cache to maintain consistent performance even as

the number of users increased. Simply by adding more servers

to the network, the system could handle the growing demand

without significantly increasing response time or decreasing

performance (Table 3).

Table 3. Results of system comparison (experiment 3)

Parameters Centralized

(average) / ms

Distributed

(average) / ms

Availability Х 5

Reliability 11 3

Scalability 9 4

The experiments demonstrated that the distributed caching

system was more efficient than the centralized cache in all

tested aspects - availability, reliability, and scalability. The

ability of the distributed architecture to effectively handle

server failures, balance traffic loads, and scale makes it a

more reliable and flexible solution for environments with high

performance and fault tolerance requirements. These results

confirm the theoretical advantages of distributed caching

systems and emphasize their practical advantages over

centralized approaches.

4. Conclusion
Traditional centralized caching systems often face significant

limitations, such as single points of failure, performance

degradation under high traffic loads, and limited ability to

scale in response to growing user demands. These issues can

lead to limitations, reduced user satisfaction, and increased

latency. This hinders the operation of modern web

applications that require continuous availability and high

response speed. The proposed distributed caching method

effectively solves these problems by using a network of

interconnected proxies that jointly manage cached data. This

approach has several important advantages.

Global Journal of Engineering and Technology [GJET]. ISSN: 2583-3359 (Online)

*Corresponding Author: Volodymyr Kozub © Copyright 2024 GSAR Publishers All Rights Reserved

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 18

First, the distributed nature of the caching system ensures

fault tolerance, even if one or more servers fail or are

overwhelmed by requests, other servers in the network can

seamlessly take over, maintaining service availability. This

redundancy significantly reduces the risk of service

interruptions, providing a more stable user experience.

Second, scalability is significantly improved by distributed

caching. Unlike centralized systems that require significant

structural changes to accommodate growing loads, distributed

caching allows you to add new proxy nodes with minimal

reconfiguration. This flexibility allows web applications to

scale horizontally, dynamically adapting to changes in user

traffic and ensuring that response times remain low even

during peak periods.

In addition, distributed caching improves load balancing in

the network. By intelligently distributing requests across

multiple servers, the system prevents any one node from

becoming a performance limitation. This not only improves

overall application throughput, but also optimizes resource

utilization by reducing the load on individual servers and

minimizing the likelihood of server overload.

The experimental results presented in this study confirm the

effectiveness of the distributed caching method, showing a

marked improvement in response time and system uptime

compared to centralized caching. The distributed model

proved to be particularly effective in scenarios with high user

demand, where the ability to distribute data and processing

load across multiple nodes resulted in smoother performance

and lower latency.

Consequently, the shift from centralized to distributed caching

is a solid solution for web applications looking to achieve

higher levels of reliability, scalability, and efficiency. As

digital ecosystems continue to expand, the demand for

scalable, high-performance solutions will only increase,

making distributed caching an important component in the

evolution of web application infrastructure. Future research

will focus on exploring methods to optimize distributed

caching, such as adaptive caching algorithms and machine

learning-based load prediction. This helps to improve the

performance and efficiency of distributed systems.

References
1. Ghoreishi, S. E., Karamshuk, D., Friderikos, V.,

Sastry, N., Dochler, M., & Aghvami, A.H. (2020).

A cost-driven approach to caching-as-a-service in

cloud-based 5G mobile networks. IEEE

Transactions on Mobile Computing, 19(5), 997-

1009. https://doi.org/10.1109/TMC.2019.2904061

2. Malavolta, I., Chinnappan, K., Jasmontas, L.,

Gupta, S., & Soltany, K.A.K. (2020). Evaluating the

impact of caching on the energy consumption and

performance of progressive web apps. In

Proceedings of the IEEE/ACM 7th International

Conference on Mobile Software Engineering and

Systems (MOBILESoft '20) (pp. 109-119). New

York: Association for Computing Machinery.

https://doi.org/10.1145/3387905.3388593

3. Mesbahi, M. R., Rahmani, A. M., & Hosseinzadeh,

M. (2018). Reliability and high availability in cloud

computing environments: a reference roadmap.

Human-Centric Computing and Information

Sciences, 8, 20. https://doi.org/10.1186/s13673-018-

0143-8.

4. Naeem, M. A., Rehman, M. A. U., Ullah, R., &

Kim, B. -S. (2020). A comparative performance

analysis of popularity-based caching strategies in

named data networking. IEEE Access, 8, 50057-

50077.

https://doi.org/10.1109/ACCESS.2020.2980385.

5. Pasyeka, M., Sheketa, V., Pasieka, N., Chupakhina,

S., & Dronyuk, I. (2019). System analysis of

caching requests on network computing nodes. In

2019 3rd International Conference on Advanced

Information and Communications Technologies (pp.

1-5). New York: IEEE.

https://doi.org/10.1109/AIACT.2019.8847909.

6. Poularakis, K., Iosifidis, G., Argyriou, A.,

Koutsopoulos, I., & Tassiulas, L. (2019).

Distributed caching algorithms in the realm of

layered video streaming. IEEE Transactions on

Mobile Computing, 18(4), 757-770.

https://doi.org/10.1109/TMC.2018.2850818

7. Santana, C., Andrade, L., Delicato, F. C., &

Prazeres, C. (2020). Increasing the availability of

IoT applications with reactive microservices.

Service Oriented Computing and Applications,

15(2), 109-126. https://doi.org/10.1007/s11761-020-

00308-8

8. Tian, H., Xu, X., Lin, T., Cheng, Y., Qian, C., Ren,

L., & Bilal, M. (2021). DIMA: Distributed

cooperative microservice caching for internet of

things in edge computing by deep reinforcement

learning, World Wide Web, 25, 1769-1792.

https://doi.org/10.1007/s11280-021-00939-7.

