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Abstract

One of the problems in theory of Sobolev spaces is the Brezis-Nirenberg problem which is
appeared in 1983 by Brezis and Nirenberg. In this paper we study the Brezis-Nirenberg problem
which is given by the form

—Au = |u|4/(”_2)u +eu in Q,
() { u=0 on 0f},

where € is a real positive parameter and Q is a smooth bounded domain in R"n > 3. That is, in
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1. INTRODUCTION

The Brezis-Nirenberg problem is introduced first fundamental results about the ex-
istence of positive solutions were obtained by H. Brezis and L. Nirenberg in 1983.
The authors explain in [I3] that dimension plays a crucial role in the study of (F).
They proved that if n > 4 there exists a positive solution of (P:) for every ¢ €
(0, A\1(€2)), A1(£2) being the first eigenvalue of —A in ) with Dirichlet boundary con-
ditions. While for n = 3, there are positive solutions only for ¢ € (A*, A1), where
A* = A*(Q) is a positive constant dependent on Q. Iacopetti et al., [2I], considered
the classical Brezis-Nirenberg problem in the unit ball of RN, N > 3 and analyze the
asymptotic behavior of nodal radial solutions in the low dimensions N = 3,4,5,6 as
the parameter converges to some limit value which naturally arises from the study of
the associated ordinary differential equation. Cora et al., [22], studied the asymptotic
and qualitative properties of least energy radial sign-changing solutions of the frac-
tional BrezisNirenberg problem ruled by the s-Laplacian, in a ball of R™ and showed
that they change sign at most twice and their zeros coincide with the sign-changes.
lacopetti et al., [23] , showed that there exists a sign-changing solution whose positive
part concentrates and blows-up at the center of symmetry of the domain, while the
negative part vanishes. This research project is based on [12]. Precisely, we study the
following semi-linear elliptic problem:
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—Au=|uPlu+ecu  inQ, (a)

ey {2 vl W
where €2 is a smooth bounded domain in R",n > 3,p+1 = % is the critical Sobolev
exponent for the embedding of H}(Q2) into LP*1(€2) and ¢ is a real positive parameter.
Concerning the case of sign-changing solutions, the existence results hold for n > 4
both for ¢ € (0,A1(€2)) and € > A () as shown in [I5] [16]. Furthermore, in [18],
the authors proved that, if () is symmetric and n = 4,5, there exists a sign-changing
solution whose positive part concentrates and blows-up at the center of symmetry of
the domain, while the negative part vanishes, as ¢ — A(€2). Note that the small
dimensions n = 4,5,6 are specific to this problem. Indeed, Atkinson, Brezis and
Peletier show in [19] that if €2 is a ball, then there exists A := A(n) so there are no
radial sign-changing solutions of (P.) for € € (0,)). While, in [20], the authors gave
asymptotic profile of the positive and negative part of radial solution u. in dimensions
n = 3,4,5,6 as £ tends to some limit value. However, for n > 7, Schechter and Zou
have shown in [6] that in any bounded smooth domain, there is an infinity of sign-
changing solutions for any £ > (. Concerning the low energy sign-changing solutions
of (P.), a study has been carried out in [7] concerning the solutions wu. satisfying
% < —hhas S The authors were able to prove the axial symmetry results for the
same kinds of solutions in a ball. Next, A. Iacopetti and G. Vaira built in [8] solutions
in the form of: u. = 0,5, — Jan, + Ve With A; /Ay — 0 or + oo, where

\(n—2)/2
(14 \2|z — a|2)"=2/%

_ maxue

0(x) == 0an(z) = o

A>0, aeR" (2)

co = (n(n — 2))%_2, describe all regular positive solutions of the Yamabe problem
—Au = u+2 in R”. This result has been proved only for large dimensions n > 7.
Note that the size n > 7 is optimal, since in [9], Tacopetti and Pacella showed that, in
dimension n = 4, 5, 6, the sign-changing solutions of the form above do not exist in any
bounded smooth domain. In [9], the authors have imposed a; = a,, this choice of points
is compulsory for their argument based on the Pohazaev identity. In this project, we
have considered a general case of low energy sign-changing solutions whose the positive
and the negative parts blow-up with different speeds. This kind of solutions u. have

to satisfy
lue||” == / Ve > =287, and maxu./minu, —0 or —oo, ase—0, (3)
Q

where S is the best Sobolev constant for the embedding of Hj () into LP*((2), that

is
- [l 0 |
Sy :=inf u€ Hy(Q),u#0,.

||u||iZn/(n—2)(Q)

)
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Li et al., [2], extended and improved the existence of sign-changing solutions estab-
lished by some researchers. Ben Ayed et al., [3], studied low energy sign changing
solutions of some critical exponent problem on a smooth bounded domains and prove
some comparison results among some limit values of some parameters which are related
to the existence of positive or of sign changing solutions. Liu and Xiaolong ] devel-
oped the limit profiles for the symmetric Palais-Smale sequence by the concentration
compactness principle and concluded that the problem admits an odd solution with
some nodal domains.

2. PRELIMINARIES

Here in this section we recall some facts that will be used in our work. In all our
work, () denotes a bounded and regular open set of R",n > 3. For ¢ € R with ¢ > 2,
we denote by L) := {u:Q — R: u is measurable and [, |u|? < co}. This set,
equipped with the norm [|u||eq) == ([, |u|q)1/q for u € L9(2) is a Banach space. Note
that, if u € LI(€), then |u|* € LY/*(2) for all 1 < s < q.

Proposition 2.1 (Holder’s Inequality). Let p,q > 1 be such that % + % = 1. Then, it
holds that | [, fg| < | fllr@llglla for all f € LP(Q) and g € LI(12).

Note that, Proposition [2.1]implies that (since € is bounded) L?(Q2) C L%(f2) for all
1 < ¢ < p. The Sobolev space is a very important set in studying PDEs. [Sobolev
space] Let €2 be a bounded and regular open set of R",n > 2. The Sobolev space

H(Q) is defined by H*(Q) := {u c}(Q): £ el?)Q) Vi=1,-- n} , where ?‘“‘

denotes the derivative of u with respect to the i'" component of the variable z in the
sense of distribution. In H(Q), define

1/2
(U, V) g1(q) = / Vu-Vv+/uv, |w|| 1) = (/ |Vul|? +/u2> ;
Q Q Q Q

Equipped with this scalar product, H'(Q) is a Hilbert space. Furthermore, we intro-
duce Hj(Q) := D(Q), where D(Q) := {u € C>(Q) : supp(u) is a compact set of Q}.
Note that Hj(€2) can be seen as Hqg(Q2) = {u € H'(Q) : u =0 on 90} . In addition, in

Hg (), the scalar product and its corresponding norm by:

1/2
(w, g = [ -V, ||u||H3(Q)=(L |w|2) -

Equipped with this scalar product, H}(Q2) is a Hilbert space. Furthermore, since (2 is
bounded, the two norms || - || 1) and || - ||z (q) are equivalent in Hj(f2). Note that,
from the definition, it is easy to deduce that Hj(Q2) € H'(Q) C L*(Q2). However, we
have a more general result. In fact, we have:
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Theorem 2.2 (Embedding Theorem). Let n > 3 and €2 be a bounded and reqular open
set of R™. Then the embedding ¢ : H'(Q) — LP(Q),

(a) is compact for each 1 < p < 22
2n

(b) is continuous for p = —.

As a consequence of this theorem, we deduce that, for n > 3 and for each 1 < p <

2 there exists a positive constant ¢ such that ||u||ze(q) < cllull g (e for all u € H;(Q)

n—27°

and ||u| o) < cllullm ) for all uw e H'().

Theorem 2.3 (Green’s formula). Letu € H*(Q) andv € H(S), it holds [, (—Au)v =
Jo Vu- V.

Now we recall the Green’s function. Let n > 3 and I'(-,-) be defined by I'(z,y) :=
W for all z,y € R™, = # y where ¢, = n(n — 2)w, and w, denotes the volume of
the unit ball in R™. The function I'(+,-) is called the normalized fundamental solution
of Laplace’s equation. For z € R" fixed, I'(z, -) satisfies —Al'(z,-) = 4, in R", where 9,
denotes the Dirac mass at the point x. When (2 is a bounded and regular open set of R,
n > 3, we introduce the Green’s function G(-,-) for the Laplace operator with Dirichlet
boundary condition. This function satisfies, for = € 2 fixed, —AG(z,-) = ¢,0, in Q and
G(x,-) = 0 on 9. Written G(-,-) as G(z,y) := W — H{(z,y), it follows that the
function H(-,-) satisfies, for z € ) fixed, —AH(z,-) = 0in Q and H(z,y) = m
on 02 Note that H (z,-) is a harmonic function. To have some information about it,
we need the following result extracted from the book of D. Gilbarg and N.S.T Rudiger.
Theorem 2.4 (Maximum and Minimal principle). Let © be a bounded and regular
open set of R™ and u € C°(Q) be a harmonic function (that is Au =0 in ). Then
(1) inf u(y) <u(z) < supuly) Ve,

yeIN yeIN

(2) [Vu(z)| < i sup |u(y)| V x € Q, where d, := d(x,00).
d:c yed)

Proposition 2.5 (Green’s Representation formula). Let Q@ be a bounded and regular
open set of R™, n > 3 and u be a functz’on satz'sfying —Au = f inQ and u =0 on
d2. Then it holds that c,u fQ x)dzx for all y € Q.

Corollary 2.6. Let u € Hg(2) be a function satisfying: —Au > 0 in 2. Then it holds
that uw > 0 in €.

3. ON APPROXIMATE SOLUTIONS

Note that when ¢ — 0, the limit problem of (P.) can be seen as —Au = |u|* ™2y in
R™. This problem is known as the Yamabe problem in R™ and it is very important to
know the solutions of this Yamabe problem.
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Proposition 3.1. Let a € R", n = 3, and A > 0. The function d, ), defined by Eq.

n42
@), satisfies =Adar =6.5" in R".
Proof. Taking the [derivative with respect to x;, where i € {1,2,...,n}, we obtain.
00, —(n— 2)A(+2)/2 (z; — a;)
= = :

3:&' 0 (1+ )\2|.’£ _ a|‘2)72‘B

Therefore, the second derivative becomes

Poar  —(n—2)A+2)/2 n(n — 2)AHO/2 (1 — g;)?
922 sl —aE TN
% (L+ X2 |z —al*) (1+ X2 |z —a|)
Thus we get
A« — — *0ap  —n(n =22 (n = 2)NHO2]y — g]?
AT L T2 T ; g T ; 2\ (n72)/2
im1 i (1+ 22|z —al) (1+ 2|z —al)
\(n+2)/2 , |
= —n(n — 2)cy —73 (l-|—)\2|:r:—a|2 — N[z —al?)
(L4 A2z - a|2) ’
\(n+2)/2
= —n(n — 2)cg i3

(1422 ]z —af’)?

Co snt2)/(n-2)
(‘(n+‘2)[(n—2) a,A )
ﬂ

= —n(n — 2)

Lemma 3.2. Let a € R™ and A > 0. It holds that

DVar n—2 1 — N2z —al? Dar n—2
A—= = Oa - A—= < Oar-
)\ 2 M+ A2z — af? )\ g A
Furthermore, for each j € {1,---  n}, we have
190, A(af-’—a:) 190, n—2.
— = =(n-2 5{1 1 1 3 N - oﬂ .
Noa, ~ Tl g X Da; g e

Note that d,, > 0 in R™ and therefore, for each a € Q and A > 0, it follows that
0a & Hy(S). For this reason, we will define the projection of §,, onto Hj(€2). Let
Pé, » be this projection. Thus, PJ, , satisfies

nt2
—APd,x =0, inf, (4)
P, =0 on o0f).

In the sequel of this project, we will denote by 0, := 0, — P, . Since P4, is not
given explicitly, we need a point-wise estimate. In fact, we have the following result
which is verv useful in the computations below.
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Proposition 3.3. Let a € (2 and A > 0 be such that Ad, := Ad(a, %) is very large. It
holds:

(1) 0< P(Sa,)\(l’) < (Sa1A(LE) Ve Q,

1
(2) Pdax(z) = dap(z) — )‘:2_2 (a,2)+ O ()‘2'533) Vzel
C

(a.?) |dﬁ$,\ - P(s s c (Q) g A%drﬁ;__‘zv

Proof. (1) we know that Pd,  satisfies . Using Proposition we derive that

cnPo,A(y) = fG 2,y)8 0 (1) dw > 0,

which implies the first inequality in Assertion (1). Concerning the second inequality.
[t follows that

~Dup = =D = (AP, ) = 8502 — (50 — o,
Thus, 0, is a harmonic function. In addition, we have
Oar(x) = dar(x) — Péap(z) = dan(z) >0 for each x € 0NQ.
Hence, using Theorem (The minimal principal), it follows that
Oor(x) > yié}}fn Oar(y) >0 Ya2el

which implies that P,y < 04 in €. This achieves the proof of Assertion (1).
(2) Concerning the second assertion, let

B(x) = Gar(x) — /\%H(a,x) — PO \(x) = a5 (x) — /\S%H(a,:r).

2
Since 6, , and H(a,.) are harmonic functions, we deduce that A¢ = 0 in £2. Therefore,
to estimate ¢, we need to evaluate it on the boundary. Let x € 0€). Then

. - Co
P(x) = () — ,\(n—ﬁ)ﬂH(a )
. \(n—2)/2 < 1 (5)
4}( L+ X [r—al ) =272 7 \@=22 |

o\ n=2)/2 o \=2)/2

NCE
(L2l =af)" ™ (= a2 (k1

B €o (1 . 1 )—(n—‘z};’z
N P 22|z — af? '

) (n—2)/2
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Recall that d, = d(a,dQ) := inf |a —y| < |a — z| for all x € Q. Thus, for = € 012,
we deduce that A\|a — x|? ()\d )®. Since A, is large, it follows that ﬁg is

—ﬂ|
small and therefore m € [—%, E]' Now, for v € R, we remark that the function

f(t) = (1+1)7, t € [—3,3] is a C*-function on [—3, ;] and therefore, by using the
Mean Value Theorem, we deduce that | f(t)— f(0)] < [|f/|l|t] < r|t| forallt e [—— e
Hence, we obtain for y € R, (1+41¢)" =1+ O(t) for all t € [-3,1]. Hence

coA=2)/2 ¢ 1
- 32 — =2 . = {14‘0(,72)}
(14 Xz —a?)"™?7 XNF e —a A2 |z —

_ Cp 1
)\ (n=2)/2 |z — a|"? +0 (,\(n+2)f2 |z — a|“) '

and therefore, by using 7 we derive that

c C

r)| < < vV x e oo
| qb( ) | — A n;-? n — A # d;’l
Finally, since ¢ is a harmonic function, applying Theorem we deduce that
c c
———— < min ) < maxo(w Vy e,
A"+2dﬂ IE(}!]¢ ) d)( ) (j!l q'f)( ) Angz d:’ J E ’

which implies the result and therefore the proof of Assertion (2) is completed.
(3) It remains to prove Assertion (3). from Assertion (2), we deduce that, for each
x €,

1
|6a(2) = Poar(2)] = | =z H(a,2) + O | —z—
AT dn
“ H(a,z) + |0 | —
ST A" g
Now, we obtain
cg 1 c
5aale) = Poune)] < 33 s + ey
o c
ST\t
\"F dn=2 ( (,\da)g)
c
S =2y
Az dn—?
which completes the proof of Assertion (3). O

For the point-wise estimate of the derivative of the approximate solution, we have
the following results:
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Proposition 3.4. Let a € Q) and A > 0 be such that \d, is very large. It holds:

6P(§a A GJEA (ﬂ, — 2) H(CL, ) 1 .
(1)/\ =\ 5)\ + 2 Cﬂ)\(ﬂ_g)/g O m in Q,
(2) ‘,\8”‘” < ”+2Pa“ —”;’250,) in Q,

00, n—2 n—2 ‘
(3} ')\ I\ = 2 90_‘) g Tt’s@,,\ in 2.

Proof. (1) Note that, from Eq. (), we deduce that

= n=2%,x fj}; . ? (7)

dtfa A ﬂ.—2) Hia,.)

Now, let ¥ := A=3> + ( CONm=2)7Z — /\mjf;”‘. By using @, it follows that Ay =0
in {2 Hence, using Thec}rem E we derive that inf esn ¥(y) < () < supyean ¥(y) for
all x € Q which implies that |[{)(z)| < sup,ean |[¢(y)] for all z € Q. For y € 99, we have
|y — a|] = d, and therefore A|ly — al is very large for each y € 9€2. Thus, we obtain
Oa. n—2) a=2z 1—N|y—al?
3@/\A(J) — C{}( 5 ))‘ 3 ; |J_ 2| 7 (8)
(1+ Xy — aP?)

n—2Y\  n=2 (=A|y —al? 1 1 g
‘““( 2 )" (wy—anﬂ)(“A%y—aw)(”/\ﬂy—aw) '

Since Aly — a| is large, using (3]), we obtain:

§5a A
6/\

—(n =2 1
=2 « .,
2A(n=2)/2 |y — q|n=2 A+2)/2|y — q|n

(n—2) 1
QA(n-z)fzﬂ(af y)+0 Ao+ 2/2gn |

which implies that, |¢(y)| < < seerragg for all y € 06
(2) Using Proposition 2.5] we get, for each y €9,

e 202y = [ Glay)(-) (A‘f"P ") ().

Or, using ([7) and (8)), we get

(y) =

aP(Sa)\ n+ 2 85QA n+2 ni2

_A A ) 6n =2 A ’ < n=—2 )

( O ) ‘ -2 |7 oA 2
Thus, we obtain
dPé, n+ 2 nt2 n+2
en [A—=22(y)| < G(x,y)0;5 (x)dr = ——c, Po,A(y)- (9)
a)t 2 0 ! 2 !
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. — ) . - er
(3) let ¢y = ”Tzﬁ'a, A —A a‘;" and 1y === 290 \+ A . " . These functions are harmonic

and they satisfy, for y € 9€0,

n—2 90, _ n—2_ g,
Ui(y) = —50aa(y) = A2 (1) 2 0 and 4h(y) = ——dax(y) + A 532 (y) 2 0.
This ends the proof of the proposition. O

Proposition 3.5. Let a € € and A > 0 be such that Ad, is very large. For each
j€{1,....n}, it holds,

10PSuy  100un o OH i
) X5, =3, g )HO ()\(ﬂ+4)f‘2dg+1)
1 9P5y»

(2)

Q CP(SQ‘,\.

A da;
Proof. From equation , we deduce that

_A 18P(§QA .fl+25n218(’]ﬂ)\ im0
A da; —2 @A )\ da; ’ (10)
%"ﬁi‘f L—_ on Of.
7
.- o 108an g OH [, y _ 10Pbay s -
Now, let 1hy 1= $2 Tz 5o (@, ) T 5. Then Ay = 0 in (. Hence, using
!'O.J (ﬂ.; (CI'.J

Theorem 2.4} we derive that [1y(z)| < sup,ean [¥2(y)]  Vz € Q. Now, for y € 99, we
have |y — a| = d, and therefore Ay — a| is very large for each y € 992. Thus we obtain

1 96, 1 A2 (o —
2000 () = 2 (n = 2)eg o _Ua =),
TR (1+ X2y = af?)

—n/2
co (y; —aj) 1
= (n—2 1+ ———
=25y —ap M Sy —ap
oy G0 Yi—ay 1

by using Eq. @ since |y — al is very large. Observe that,then

oH o (Wi~ a)
6(Lj (CL, y) = (n 2) |y_ (El“ .

Thus Eq. becomes

130,5, , ¢ OH(a,y) 1
X aaj (y) N An/2 Baj 0 ,)\(“"'2};242"'1 '

which implies that

C

|ha(y)] < NG 2T Vy € 0N (12)
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Concerning Assertion (2), using Proposition 2.5 and Eq. ([10), we deduce that

1 OPd, 1 dPI,
= ' —A( - ' dx. 1
oy ) = [ G (-6 (37502 ) e (13)
Note that
18P60,A _Fl+2 21 863)\
)‘A (X da, ) B 2‘50)\ \| da;
/2|y .
= n+25$7\2€0(n—2) N 72
2 (1+ X2z — a2y’
nt2
< RTH(S‘:;Q’
by using the fact that lJ_ﬂ—z < 1/2 for all t € R. Since G(z,y) > 0, Eq. implies
that
1 |OPdax n + 2 ned _n+2
Cny ‘W (y) < /G (2,9)055" (2)dzr = ——enPdax(y).

Thus the proof of Proposition is completed.

4. MAIN RESULTS

In this section we present our main results which concern the estimating some integrals
involving the function Pd, ) and its derivatives with respect to A and the point a.

Theorem 4.1. Let n = 3,
(a)/ 5= s+o((A$)n) where 5:/
b E_ZEJ 1
o [ o (gt
2_:12 _ 1
(C)/P(Sa,A _S+O((Ada)ﬂ_2)-
0

Proof. (a) We have
2n

dﬂ;\ -

J

- [0

Rn

2n_

n -_—

a € ) and X\ > 0 be such that \d, is very large. It holds

2n_
n=2

d(]1 ’

) . where B0y = dax — Pdax,

In
n=2
[
R™\Q

From the definition of 4, », see Eq. @, it follows that

2n 2n

n=2 __ . m=-
5&,}« =G

2

J.

o7

A dx.

14+ A2|x —al?)"
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Using the change of variables y = A(x — a), we obtain

2n 2r 1 2n
571—2 — =2 d — 571—2 — S‘ 15
‘/\n a,A Co /];n (]_ + |y|2)ﬂ Y /n 0,1 ( )

For the other integral in Eq. ([14), from the definition of d, := d(a,992) = inf{|x —
a|, z € 00}, we deduce that B(a,d) C  and therefore R"\Q C R™\B(a,d,). Hence
we obtain

2n 2n _2n_ An
(San—E g / 5:.—2 Fr: n—2 / - ndﬂd
]JRH\Q A R™\B(a.da) o ° R™\ B(a,da) (1+ A%z — al?)

o C / dz
S Jre\Bad,) 1T — al*

Passing to the polar coordinates, we obtain

5 — dr < = < | (16)
w/]R"\B(a,du) A A" S, T A Ja, T (M)
(b) Using Proposition [3.3] and Theorem we derive that
) C ni2 c C c
075—2 ga 675—2 g S
/ rS AT =2 dr=2 Jo N T N -2 A0=2D2 (Ad, )2

which completes the proof of Claim (b). It remains to prove Claim (¢). Observe that,
from Proposition we deduce that 0 < 6, < d,.5. Obtain

2n 2“ 2n n42
P2 -t = 540 00)

2re 2re n+4+2
/P(s;;f :/ 5337 +0 (/ a;;?e”)
Q ' 0

The proof of Claim (c¢) follows by applying Claims (a) and (b). O

Hence, we get

Theorem 4.2. Letn = 3, a € Q2 and A > 0 be such that \d, is very large.
(a) For each v € H}(Q), it holds

) (Ad,)~"2 if n<B5,
/5;? an|v] <ellvll x § In*? (Mda) (Ada)™" if n=6,
. (Ad,) =272 if n>T.

(b) Let v € Hj(Q) be such that [, VPd, - Vv =0. Then, it holds

s (Ad,)~ "% if n<5,
/ Psrto| < cllo]l x 4?3 (Ady) (Ma)™ if n=6,
(Ad, )~/ if n>T1.
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Proof. By using the Holder’s Inequality (see Proposition R.1), we derive that
ntd

/5(:?99,,\@ < (] v = ) (/ (‘iﬁga.}() ’ ) . (17)
Q 0 '

Now, we have

75—2

(/ |v|—) = lollmrn-siey < ellol (1)

For the other integral in Eq. ([L7))., using Proposition B.3] we get,

4n

f 5%97&+2 C /\”"'2 dﬂn

Adg n—l
21("_21 / i ———dr,
nt2 (1+ r2

by using the change of variables y = )\(:17 — a) and polar coordinates. If n = 6, the
integral in Eq. gives

Mo 5 1 s Ao g,
" < T a [ E
o (14172 o (1+72) 1 r

< c+1In(Md,) < 21n (M\d,),

(19)

since Ad, is large. If if n < 5, the last integral in (|19 is bounded, indeed,

Adg .:(.Tl—l +oo ?,,n—l
—dr < / dr < e,
‘/ﬁ (]_ + T2)4n/(n+2) o (]_ + ?,2)411,/(n+2)

M\

qmce? —n+1=756-n)+1>1forn<5 Ifn>7, it holds
Ada =1 Ada o
/0 (1+7 )4nf(n+z)d "s /n TR S o(M)
. 8n n . : .
since n — Rl (n—6) > 0 for n > 7. Thus, combining these estimates with
n n
Eq. (19), we obtain
o In (A\d,) / (Ad,)° if n=6,
/ 5@@9““ cx {1/ (,\da)z“(”'”f 2 if n <5, (20)
Blada) 1/ (\d,)" if n>T.

It remains to estimate the integral over Q\B (a,d,). Using Proposition we know
that 6,5 < da,x and therefore we get, by using Eq. (16)),

Bn 2n 2n
T s v c
/ dﬂf}\ ga,). < / dﬁ,,\ < VAL (21)
O\B(a,ds) O\B(a,d.) ( a)
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Combining Egs. and (21)), we derive that

o\ 2 ()~ if n<5,
( f 65:;‘2““*259;?) <ex { In?? (M) (M)~ if n=6, (22)
N (Ad,)~(+/2 it n>T.

Thus, the proof of Assertion (a) follows from Eqs. (17)), (18) and (22). Concerning (b),
since 0, < dq.0, we derive that

% b2 n+§ %
Po;v= [ (bap=bar)*2v= [ 5,0+ 0 [ 6557 0aslv] ) -
Q 0 0 Q

The last integral is computed in Assertion (a). For the first one, using Theorem [2.3] it

follows that
n+2
/ "’215 _/ (—APd; )\ )v = f vPd, v = 0.
Q Q

This ends the proof. O

Theorem 4.3. Letn =3 and v € HY(Q). It holds

2n
28 < flol)® Y .
(a)/ |a| c||v| ;’36([},”_2)_,
\—(n=2)/2 if n<5
(b) a)t
0

(InN?* A2 if n=6,
A2 if n>7

Proof. (a) Using the Holder’s Inequality (see Proposition [2.1]), Claim (a) of Theorem
we obtain

v

B(n=2) In—3(n=2)
5n = ’8| 17 < |1f_”2 o 5=*2—n? - < cllwll?
'L a,\ = C||v .

Q

This ends the proof of Claim (a).
(b) Using again the Holder’s Inequality (see Proposition , we get

an 2n . 2n 2n
](Sa‘,\ < ( |fu|n-z) (/ a;;?) ) (23)
2 2 Q

Now, we need to estimate the last integral in . In fact, it holds. If n = 7, using
the definition of J,, (see Eq. (2)), the change of variables y = A(z — a) and the polar

v
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coordinates, we get

\n(n—2)/(n+2)

ISSN: 2583-3359 (Online)

2n
42
/ 6&.A g
Q

y
v (14 A2z —

eAn(n=2)/(n+2)

—

/}‘n

c (s o]
< —
Xin/(n+2) /n (1+r

< C
= \dn/(n+2) 7

since 2n"+g —n+1=

convergent. If n = 6, then +2 =

“‘ﬁ +1>1 forn

o[2) =D/ (n+2) dx

1

/R" (1+ |y|?

)n(n-z);(n+2) dy

)n(n—Q)f[n+2} dr

(24)

> 7 and therefore the last integral is
3. Let R > 0 be such that © C B(a, R) (since Q is

bounded). Using again the change of variables y = A(z —a) and the polar coordinates,

we get

/55‘1‘2 g/ By < c/
Q B(a,R) B

(&

< Ny
X6 Jpoar (1+ |yf2)°
5

(1+r2)

(&

c+1n(AR)) =

c AR

<43
A3 ),

A

<5

/\3(
In A

“'-<-..J/\31

since In A is large. If n < 5,

]

AS

dr

/\3

?d?'+/
1

sdx
(@r) (L+ X[z —af?)

AR dr
7)

(c+ln,\+lnﬁ’)

(25)

\n(n=2)/(n+2)

2n n
[oi<e]
Q B@R) (1+ Az —a

c

< An(ﬂ—2);’(‘n+‘2}

c

g An(ﬂ—ﬂ)/(n+‘2}

C

c

S \ar=2)/n12)

dx

|2)ﬂ(ﬂ—‘2)f(ﬂ+2)

/ dx
B(aR) |T — a|(n=2/(n+2)

dy

.[B(U,R)

R
n—1—2n(n—-2)/(n+2)
< \n(n=2)/(n+2) /0 T dr

|y|2n(n=2)/(n+2)
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since n — 1 — 2p2=2) — nr‘” 1 > —1 for n < 5 and therefore the last integral is

nt2
convergent. Combining Eq@ . the proof of theorem follows. O

Theorem 4.4. Letn =>4, a € 2 and A > 0 be such that Ad, is very large. It holds

w [ &, < c(In M)A~ if n=4,
0 T ) ea? if n>5

o In(\d,)
(b)/ad)ém SN

Iii%_ €1 1
@ 5 M—WO(W)

a

(d) | 64 < ﬁ, where ¢y is defined in Eq. and
Q

| nig dx
L= n (1 + |3¢|2)(ﬂ+2)l’2'

Proof. (a) Note that, since 2 is bounded, there exists R > 0 such that Q@ C B(a, R).
Using the definition of d, ) given in Eq. , the change of variables y = A(z — a) and
the polar coordinates, we get

- /\n—2
Our S € ‘ —sdz
0 B@.R) (1 + A%z —al?)

An—2
_/ n 2dJ
n,\R} 1+ ly|?)

< — —d:r
)\2 (1+r2)"?

Observe that, if n > 5, then 2(n—2)=n+1 = n—3 > 1 and therefore fn %gdr <

n—l

fn T ————dr < c. But, if n = 4, the integral becomes

AR AR 3 T AR .
—n_zd?’ = 72(1? < 7({’?" -+ —
o (147r?) o (14172 o (1 +?°2) T

< e+ 1In(AR)
<e+InA+InR
<cln A,

since In A is large. This achieves the proof of Assertion (a).

(b) We have
n /\ﬂ;‘2
f gy < Cf n/2 dz.
B(a.da) Blada) (14 X2 |z — a|?)
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Using the change of variables y = A(x — @) and the polar coordinates, we obtain

o 1
5 < / —————dy
/B(a,d) Y SNT Jponay (1L g2
Ady =1
& r
< — _—dr

1 =1 Ada 1
< % / ?—ﬂdr-r / Zdr
A" o (1+r2)" 1 T

(c+1In(Ad,))

S ﬁ
In (\d,)
s € /\nf?
(c) Note that
0, A ,)\ - 5(1,)\ . (27)
Q R" R™\Q

The second one can be computed as

wta A(m+2)/2
f Igx" S C/ o (n+2)/2
Rn\Q R\ B(a,dg) (1 + A2 |z — al )

< ¢ / ! dx
= \(nt2)/2 B\ Blady) | — |n+2

< [Ty
Sz [t

C {7
S /\(n+2}f2££g :

(28)

For the first integral in Eq. (27)), Using the change of variables y = Az — a), we get

f ntz ni/ }‘(ﬂ+2)f2 d niz l ] l d
(J‘n_ _(ﬂ”_ n I_C”_ i F; T ‘ y'
S e -t N e (L )

This completes the proof of Theorem [.4] d

Theorem 4.5. Letn =2 4, a € 2 and X > 0 be such that \d, is very large. It holds:
5o 6‘(%,\ _ 1
((I)/ QAA O(()\da)n),
o2 3Pdﬂ A - OPd, » > (ln (,\dﬂ))
b P52 A =2( Pd A ’ O =+ |
o) [ Po2 =2 (paa Tt ) o (1509

N 0P, » n—2 _Ha,a) In (Ad,) 2n
(c) <Poﬂﬁ,\,/\ )= 3 € e +0 AL where ¢ := ¢

and cq is defined in Eq. .

dx
Joe (14[z2)" T
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Proof. (a) Note that, from ([15]), we know that
/ 17 =S, Va€eR', VA>0,

which implies that

0 2n 2n 142 0§ A
_ 511—2 — (S‘n— i, ) 2
0 oA /Rn @A n—2 /Rn EA)) (29)
Furthermore, using Theorem [3.2| and we get

12 GE /‘ 2n_ / 2n c
(S:_Z)\ —1 < 5:_2 <c d;"‘z < . 30)
/]Rn\sz ) R7\Q A R\ B(a,da) A (Adg)" (

Thus, and (@D imply that

a, & ada A 3&.3 A l
-2,\ 2= / siia%er _ g ( n) :
/S n Rm\(2 @A TN (Ad,)

(b) Using Proposition we have

0 < gﬂﬁA = (S-QA Pl’?a)‘ ﬂ by in €. (31)

Hence it follows that

nt2 nt
P(Saf,\ap %ar _ / (8ax = Ban) = A L0
Q Q ' OA
L 6‘Pdﬁ L + 2 - 00a.x ar
= '2)\ 5326 A—5 = A
o N -2 /Q ax Vo ( FY)\ ) (32)
f=n aP9,
OUR02  IN
+ O (‘/Q a. Cah a)‘ )
For the first integral in Eq. , using Theorem [2.3[ and the fact that {)Pa“ *~ =0 on
), we derive that
%2 6P5“ / . ( ELP(SE?,\)
an A = —APog ) | A

/g, ’ 0! VA

- dPd,

= [ VP,V |\ ’

fg ( 2 )
dPd, »

= ( Pég, A =) 33
< MA— > (33)
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Concerning the second integral in Eq. ([32)), it will be divided into two pieces:

n+2 [ A J, APo, » .
0PN, = [ [—ANT—22) (6,5 — P§
n—2 /Q @A TN /Q( E)) )( o )

n-+2 vlis o, A 8P59f;\ R
=2 6‘”‘ A N /Q (_A)\ oA )Pdﬁ”\

1 P,
=0|—— |- | VI A——= | VP4,
(uda)ﬂ) / ( 2 ) !
OPo, 1
Po,y, \——= — |,
== (P52 ) +0 (1)
(c¢) Using Propositions and we get (since n > 4)

= 30,5 C f s / 285 In (A\d,)
5: 2€ﬂﬂ ) < o;n 2 +C ()J;I 2 g Cin. (35)
/s: A o (Ad2)""? JBa,d.) . NBlada) (Ad,)

oA
where we have used Assertion (b) of Theorem [4.4]and Eq. (I6). It remains to estimate
the last integral in Eq. (32). Using Propositions [3.4]and we get:

(34)

g=n dPd, 5 cis
5"'292 A—22 gc/o"*ﬁﬁ
‘/S; a,h A 5/\ Q a,A WA
< ¢ / 5":2 + ] af:z (36)
= T . 5 a c a
(/\dg)“” B(a.da) A O\ B(a,d,) A
In (\d,)
S0y

where we have used ((16]) and Assertion (b) of Theorem [4.4)in the last step. Combining

Eq. -7 we obtain

iz .
Psis )\aPé“ 2(Ps, AjAEJ‘Pdﬂ?A) 40 (111 (Adﬂ)) ,

0 oA ' oA (Ad,)"
Lastly, we will focus on proving Assertion (¢). Using Proposition [3.4f we have
EJ‘Pdﬂ A f apfsa A
< Pogy, \—="=>= | VP, VA :
A0 )

. OPS,
— [ (=AP§, ) ANl
.A( ) oA

sy [ (00, =2 Ha) 1
= [ o aSer +0 [ —=
_/5; a,A { a/\ 2 )\(n 2)/2 (A_;Ldg) }

30,1)\ n—2 ¢ —+—

— [ or ) "PH
Q oA 2 /\(n—Z)[ﬁZ ( )
1 2
+0 A +2/2gn | Ogx ) (37)
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The first integral is computed in Assertion (a). For the last one, using Assertion (¢) of
Theorem [.4] we obtain

5727 < ‘ = 38
/\(n+2)[2dﬂ aJ- S )\(n-l-?};‘an A\(n=2)/2 (/\dﬁ)n' ( )

Concerning the second integral in Eq. , expanding H (a,-) around a and using the
fact that H (a,-) is harmonic, using Theorem we get, in B(a,d,/2),

_ 0 |z — al?
H(a,z) = H(a,a) +abH(a a)(r—a)—l—O( i )

where 0H /0b denotes the derivative of H with respect the second variable. We notice
that, in the last formula, we used the fact that: d,/2 < d, < (3/2)d, for each = €

B(a,d,/a).

Thus, we obtain

/ 0" 2 x)H (a, ;r)d:r.=/ 0.3 (x)H(a,a)dx
Q (adu;‘2}
n+2

+ Z 8!) (a,a) / (zj —a;) 0,5 (x)dx

(a,da /2)

n+2
( o= af' 655 )
B(a da/2)

nt+2

575 (x)H(a, I)dﬁ“)

(39)

( ]\B(a. da/?)
Using Theorem we deduce that

H(a,a) nt2 H(a,a) ( 1 )
- 03 (2)dr = + O = . 40
A5 Sy @ (=) P2 (Ady) (40)

For the second integral in Eq. (B9). since the function is even with respect to (z; — a;),
we derive that

ni2
/ (z; —a;) 6,3 (x)dz = 0. (41)
B(a,da/2)

Now, for the third integral in Eq. , we have

nt32 /\(n 2)]2)\2 xr —
] |z — al? 5"'2( x)dr < c/ | 5 (n-lz)jzdx
B(a.da/2) Blada/2) (14 X2 |z —a]?)

. Ada /2 ot
< Yo |
A\ (n+2)/2 0 (1+7 )(ﬂ+2)f

. In (Ad,) "
S O\wv/z “2)
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Finally, for the last integral in Eq. ([39), we get

/ 0ax (w)H (a,x)dr < p/ 0o (x)dx
O\B(a,da/2) a  JO\B(ada/2)

= dg_g \(n+2)/2 R™\B(a,da/2) |_I" — a|‘-’1+2

< _°c /oc ld
- 4 —ar
AN dn=2 Jg, 0 73

&

S ez 43
A" dn (43)
Using Eqs. (0] - , the equation @) becomes
(.U 75—2 = H(a.._, a) lll(z\dﬂ)
)\HEQ / 5 (I) I - C{](:']_ )\,(n’_g) + O ( ()\da)ﬂ - (44)

Combining Eq. (38), (#4) and Assertion (a), the equation becomes
Pd n—2 H In (Ad
<P5a1,\,/\6 ’*> _n=2 8w ( n “)) _

oA 2 An—2 (Ad,)"
This completes the proof. O
Theorem 4.6. Let a € ) and A > 0 be such that \d, is very large. Then, for n = 5,
it holds: aPs .
Pd, ) “*":-‘3—2+0(—),
‘/Q WA 5/\ )\2 (Ada)n—Q
- n—2, ly[* =
with co = ch —Jdl,- Forn =4, assume that d, := d(a,0Q) = ¢ > 0,
2 o (L IyP)"

then it holds:

oPs,,  , In) 1
\/QP(SG’AA N = —cnw_q? + O (ﬁ) 1

where ws is the area of the unit sphere of R:.
Proof. Observe that

OP6,, [ . 4., OPS, 5 D0,
/QP(SMA 2 _/Q"“)‘ 5 —/Qea,m 5 -/5“)\ .

Using Propositions 3.3] [3.4] and Theorem [.4] we get

0P, » 00,0
[ 0T | [ 6052 < [ burbun
Q d 0 Q
c
/\(n—z)/zdn—z/aﬂA
c dx
~ _‘ _‘ —
/\n Zdn 2 ~ |I—ﬂ.|n 2
< c
- ( Ad)n—?'
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For the other integral, we have:

) — n=—2 — )2 _ ]2
‘/501)‘).8%?;\ =c§n 2/ APTEH(I = A |:{: na_|1)d:r
Q A 2 Ja (14 X%z —al?)

n—2, (f / )
—cﬂ A + ‘s
2 B(a.d) O\B(a,d)

n—221/ 1 — |y|? ( 1 / dx )
2N Jpoag (1+ [y A2 Jonpaa 1€ — af*

where we have used, for the first integral, the change of variables y := I(x — a). For
n = 5, we have

j dr . -/DO fr‘n_l y /og 1 e C
Top — o|2n—4 = ¢ S ar=c - r - ]
\B(a,d) |3° - a|21’1_‘l=l d ?"271_4 d r.r'ﬂ—t; dn—d
n—2, 1—|yf? n—2, |2 = 1
“ T a1 =5 % | T
2 Boad) (1 + |y]?) 2 m (1+ [y[2)
1
+ O (/ —n—dy)
me\BoAd) (1 + |y[2)" 2
1
== gy
Thus, for n > 5. we obtain

. 0P, Co 1
P, NI ler — 2 ).
/g ) VR TR ((M)n_g)

However for n = 4. since (2 is bounded and d, = ¢ > 0, we derive that

f dzx < f dx
__dz e
Bl T = al*"™  Jo\p,) & —al*

and

and
1= 2 Ad 1 — 2
/ ‘y‘ﬂ_l dy = meas(S?) / 7?63
B (1+ [y]?) o (L4r2)
1 HOD* (2 ¢t —1)
N dt t=1+7%.
g (2‘/] t3 ( +r )
1 HOG? 1 3 2
= —w —— 4+ = —— | dt
23 /1 ( (T e 53)
1 ,
= Lun (=1 (1+ (A)) +0(1)
1
= —§w3 (2In X+ O(1))
= —w3In A+ O(1).
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This completes the proof . O

Theorem 4.7. Let n > 3,a €  and A > 0 be such that A\d, s very large. Then, for
each v L OP§, /0N, it holds:

P (’\d)(g_ﬂ) if n <5,
./PiTﬁﬂfg*vadM|cmrﬂﬁ”u® inn =6,
N (Ad)~(v+2)/2 ifn>T

Proof. Observe that,

- 6P00 A ) 6(5 - aga A
fpn,xm /P"“Aa/\’_]‘p‘?“}‘m

Using Propositions 3.4] 3.3 and Theorem [1.2] we get

fP(S )\a;;)\ lv| < C/Qti;?ﬂa,hm
(Ad)=™ if n <5, (45)
<cllo] x § (M)~ In*P(Ad)  if n =6,
(Ad)~(n+2)/2 ifn>7.

For the other integral, we get

n=2 a(sa/\ i N _q a()a/\
/P(Sa)\ A—= £ U /Q(()a)\ 0a,\) A ()/\

D4 x o=
L ()1—2)\ a, v ()11.—20a
/ a,\ 0/\ =+ O (/Q a,\ A | |>
n—2 0P5a~)‘ / ﬁ ‘
B 71-+2/Q_A ()\ oA ) L+O(/Q(Sa"\ HGM\M) '
n — ap()aA -ﬁ
T n+2 <A B '> P </Q ad 6"“'1"') '

The scalar product is zero and the integral is computed in . Thus the proof is
complete. O

86(1 A

Theorem 4.8. Let n > 4, a € Q and X\ > 0 be such that \d, is very large. For each
g € {1 n} it holds:

"+21(9P()a,\ 18P(50,\ I
b P§"? — =2( Pogy,——= — ),
0) J PO 3 e =2 P 555022 +0 ()

1 Oda ¢ 0H (a;a) 1 s : )
(¢c) <P(5a,\ X Ba. > 5 Ba + O (W) where ¢ is defined in Theorem (/.5
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Proof. (a) Using Theorem observe that:

{—2 1 90, 2 A () — ay)
/ 4 W = (n —2)¢; / 1 2“' —da.
Bla,da) aj B(a,da) (l + A% |z —al )

2n ﬂ+1 )
n—2)ch? A Y; dy.
( ) . a9y n41 Yy
B(0.da) (14 A2 |y| )

by using the change of variable y = (x — a). Note that the function in the last integral
is even with respect to the variable y;. Thus we get

242 1 90, 5
/ 6I3E = DPur _ g, (46)
Bla,da) A 5(313'

Furthermore, we have

/ 551'—2 190,
O\B(a.dy) A 5‘31

(‘/ /\n+] |3¢ _ a| .
~= v N\ Bla,da) A2n+2 |.T, _ a|2n+2 A

c 1
< S S 47)
At ./R"\B(a,du} |z — a*"! (

PR R
3 An+l p rn+2 "= /\n+1d:11+1'

Combining Eqs. and ([{17).
(b) It follows that

2:2 1 9P - n+2 1 JP0,,
</_E_')(S'anA }‘ aa A — / (0'1?,\ _9{1))“—2 X aa A
J

nt2 3}'—”06,\ 'n.+2 - laéa} lagﬂ)\
5m=2 ) _ 5729, - A= s
- [ - 15 [ (YT i) @
co ([, [1200m)).
Q

A Oa;
For the first integral in Eq. (48), using Theorem [2.3]and Eq. (10, we derive that

142 laP(Sa)‘ lﬂpéa)\
/‘S“,\ da; /Q( APd) da;

1 aPrs“
Pé,.
szv AV ()‘ da; )

1 OPdq
= <P5a.}u XW> : (49)
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Concerning the second integral in Eq. (9], it will be divided into two pieces. For the
first one, using Eq. ({10) and Assertion (a), we get

0" ——2f, = —— [ 0" ——=2 (0, — 0, O ——
n—2/Q @A\ da; A n—2/n ad A da, (6. A+ ((J\da)“"'l)

1 9P, 1
—A— : — P, O\ ——%
[ (=23 oa, ) o+ ((Ada)““)
1L OPdg 1
=— | V|~ = | VP + 0| ——5
[ (3% wras ((Adﬁ)““)
1 9P, 1
= — <P5Q‘A, X da, > + 0O (W) . (50)

For the second piece, using Propositions [3.3] and we get

4 1 63 A 2 _n 2n
(San.—Z 90 \— ‘ a, |9'L’\ 11;2 / 6;5—2 + C/ 5(:—2 )
/sz AN Oy P B) Jp oA as

where B := B(a,d,/2). Now, observe that, for x € B (a,d,/2), it follows that d,/2 <
d, < (3/2)d,. Thus, using again Proposition we obtain

1 06,
A aaj

QC‘

1 890‘)\ (&
/\ aa_? L‘I(B) - /‘\ﬂf2d‘l’al—]-

Hence, using Assertion (b) of Theorem Proposition [3.3 and Egs. ([L6)),

. 1
6;_2 ga.h_
R

Thus the second integral in Eq. becomes

n + 2 ﬁ 1 aﬂﬁﬂ?)\ 1 890_‘)\ _ - 1 6P§a,)\ 1
n—2J, % fan (A da; X da; ) - <P"ﬂ’** A Oa; >+O((Ada)n)' (52)

agﬂ.,}t

¢ 1 In(Ad,) ¢ ¢
+ <
3aj

S An2dn=1(A\2) A2 (Ady)” S (M)

(51)

Now, for the last integral in Eq. , using Proposition and Eq. , we obtain

= St 1 bt 1 s
O O < 5a,>t gaf,\x + 6.:1,). 9:1?,\; +c 5&,).
0 B B O\B

(53)
The last integral in Eq. is computed in Eq. . For the second one, it can be
deduced from Eq. (5I). Indeed, using Proposition we have:

1 0P,
A aﬂj

Dbar
@aj

064
5(1_]:

/ (SHﬁﬁ 1 aﬁa‘A < / 5£9 1 (9!9,35,\ C (54)
A Yady = A VaAy = .

o “° TN Oa, o “N A Day (Ad,)™
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Now, for the first integral in Eq. (53], using Theorem and Proposition we have

S=n 1 130ax
(Sn—Z Hﬁ - 3
ﬁ a,A ,A)\

aaj

< ¢ / 1 \n/2
(Adg)ﬂjg B(a,du/z} )‘ |:I: - a| (1 + AQ |r _ alﬂ)ﬂf‘z

c 1 Adg /2 =2
< ——%—> —dr
(Ad2)™* An/2 fn (14 r2)"/?
C

<~
i (55)
Combining Egs. (B5)), and ([16), the Eq. becomes
= 110 A C
o =2 62 _ iy —. 56
L a,A ﬂ.}t/\‘ } aaj —= (/\da) ( )

Hence, the equations , , @D, and @ imply that

2:210P5,, 10Ps, 1
0 PoﬂﬁA A 3(13 =2 <P(sa‘}n A 3(1.3 > + O (()\dﬂ)n) ‘

(¢) Using Proposition observe that

<P5a.)\, lE)}P(Sa'}t> = [ VPj,,-V (l aP(ﬁ“”‘)

1 9P6,.
- Q _AP(SQ,A X 6(1}

=2 (196,  ¢o OH(a,-) 1
_LOE’A (/\ aaj - /\ﬂ)f? {?ﬂ,‘? +O szl-—}ldfal-l-l . (5?)

The integral in Eq. (7)) will be divided in three pieces. The first one is computed in
Assertion (a) and the second one can be deduced from Assertion (¢) of Theorem
and we have:

. L 58
0 a,A A%dnﬂ = A\(n=2)/2 )\(n+4}/2drﬂ:+1 o (}\dﬂ)n+1' ( )

For the last piece, expanding % around a in B := B (a,d,/2) and using Eq. (?7?)
J
and Theorem we get

o0H 0H ly — al
o (a,y) = 5—(a,a) + O :
3aj 5(.!3' dg
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Thus, we obtain

—t 0 _ ¢ 8H s fess
)\ﬂfQ/) ((L y)dy = \n },28 (a,a ] +O(/§)\B a\ An;gdﬂ_ )
42
(Anf?dﬂ/b‘ a|5“-2)

¢ OH v
= = "o, —(a, af)-l-O(()\(g e A”f2(£“f|J ald. )

where we have Theorem In addition, we have

f | |§nig ( )d f /\74;2 1 . d
y—als)3% (y)dy < c , o dy
N A R (1 + /\2|3}_ alg)( +2)/2

< / ||
T2 o, (1 + []2)" D/
< C

=z W!

by using the change of variables x = A(y — a). Hence we obtain

M__ L
Combining (58), (B9, and Assertion (a), we derive that
1 OPdqg ¢ OH 1
<me X\ da, >— T da; (a, a)+0(()\dﬂ)”)
which completes the proof. O

5. CONCLUSIONS

As we know that the Brezis-Nirenberg problem is introduced first fundamental results about the existence of
positive solutions were obtained by H. Brezis and L. Nirenberg in 1983. Several authors explained that there
exists a positive solution of (P;) for every ¢ € (0,41(€2)),41(Q) being the first eigenvalue of —4 in Q with
Dirichlet boundary conditions. In this paper, we introduced and investigated some asymptotic analysis for a
family of sign-changing solutions of this problem. We studied the approximate solutions for the point-wise
estimate of the derivative of the approximate solution and the estimating some integrals involving the
function Pd,; and its derivatives with respect to A and the point a.
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