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Abstract 

The research addresses both univariate time series, where forecasts are made for a single 

variable over time, and multivariate time series, wherever multiple organized variables are 

used to develop predictive exactness. The data is split into training and testing sets by means 

of time series-specific practices such as sliding windows and expanding windows, confirming 

that chronological order is conserved and that models are authenticated effectually. 

Experimental consequences determine the applicability of deep learning models in 

accomplishing high accuracy for both short-term and long-term analytical tasks. The study 

compares the performance of univariate and multivariate tactics, highlighting the benefits of 

integrating multiple variables in refining forecast consistency (Adhikari and Ikeda, 2020). 

This research makes available a wide-ranging framework for applying machine learning and 

deep learning practices to time series prediction, offering insights into model selection, data 

preprocessing, and valuation approaches. The proposed approach validates substantial 

potential for real-world applications, enabling decision-makers to make informed forecasts 

and optimize procedures across various domains.  

Keywords: Univariate, Multivariate, Temperature, Humidity, Rainfall, Surface Soil Witness, 

Time Series, Chittagong, Chattogram, Bangladesh. 

I. INTRODUCTION 
This study will make available an overview of how deep   

learning (DL) and machine learning (ML) can be functional to 

estimate the variable by means of univariate and multivariate 

time series analysis within the neural network context. By 

seeing multiple consistent aspects, models afford a 

comprehensive and thorough image of groundwater dynamics, 

empowering more precise forecasts and informed decision-

making. Rainfall modeling and simulation are decisive tools 

for considerate and forecasting rainfall patterns. Particular 

temperature modeling supports in predicting weather, 

reviewing climate variation, and dealing agricultural performs 

(Lim and Zohren, 2021). More than a few machine learning 

algorithms can be castoff for research to find the above 

statements analysis, as well as Support Vector Regression 

(SVR), Random Forest (RF), K-Nearest Neighbors (KNN), 

Long Short-Term Memory (LSTM), and Gated Recurrent 

Units (GRU). The emphasis of the research has been 

fascinated on current enlargements, advancements, margins 

and insufficiencies of Advanced Neural Networking (ANN) 

tactics by using the Deep Learning system. The relevant and 

expected measurements’ level data were employed to train 

and test the Neural Network. With the usage of the 

proficiency principles, mean square error (MSE), root mean 

square error (RMSE), and other metrics, each network 

structure's prediction accuracy was evaluated (R2). Results 

have been demonstrated the time series forecasting in neural 

network (NN) model in the area of Chittagong (Chattogram) 

that is located in the southeastern zone of the country, at the 

mouth of the Karnaphuli river, in front of the Bay of Bengal 

in Bangladesh. 

II. METHODOLOGY 
Data Collection 

Appropriate data was collected from NASA website for 

multivariate and BWDB for univariate time series analysis. 

The data would be collected at a right time interval (e.g., 

hourly, daily, monthly) based on the foretelling task.  

Multivariate models involve all variables to have 

corresponding timestamps. Testing models with artificial time 

series data generated based on known shapes. APIs make 

available real-time or historical data feeds for time series 

modeling. For univariate data entails a single variable 
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restrained over time. And for multivariate data involves 

collecting multiple connected variables over time. Scaling 

data (e.g., min-max scaling) supports neural networks 

converge quicker.  

A. Loss and accuracy function 

The choice of loss and accuracy functions is key for 

efficiently training and evaluating time series prediction 

models. The functions can be functional to both univariate and 

multivariate time series data, with slight amendments to 

handle numerous variables in the case of multivariate 

prediction (Fawaz, Forestier and Weber, 2019). The R-

Squared is often apply to measure how well the estimates 

match the real values. It expresses how much of the 

modification in the time series data is enlightened by the 

model. A value of R2=1 means perfect prediction, while R2=0 

suggests that the model doesn’t explicate any of the variance. 

The R-squared (R2) is a numerical formation. If the extent of 

loss function is high, it means algorithm is presentation a lot 

of alterations the consequence and desires be amended. 

Having a low accuracy calculation but a high loss would 

ensure that the model ensures big errors in the maximum of 

the dataset (Lundberg and Lee, 2017). But, if both loss and 

accuracy are low, it ensures the model makes small errors in 

the most of the dataset. Nevertheless, if they're both high, it 

shows big errors in some of the dataset.  

Particulars Low Loss High Loss 

Low accuracy 

A lot of small 

errors 

A lot of big 

errors 

High accuracy A few small errors A few big errors 

Figure 1: Low loss and high loss formation 

In time series prediction, if the model forecasts (Figure 1) 

values constantly close to the mean, the errors might be small, 

but the forecasts are not precise. A time series model trained 

with inadequate data might produce prophecies that are 

steadily off by large borders.  A well-trained LSTM model in 

a univariate time series estimate where forecasts align closely 

with authentic values (Cheng, Li and Castelletti, 2020). In a 

multivariate time series, if the model captures the widely held 

of relationships but fails to predict extreme values precisely, 

the exactness may still be high while loss remains high.  

A. Split data for Training and Testing 

Splitting the data into training and testing sets is a crucial step 

when spread over deep learning and machine learning models 

to time series prediction. Unlike random splits often applied 

for other types of data, time series data involves careful 

reflection of its chronological structure to preserve the 

sequential order.  The input data is split as training and testing 

(Figure:2): 65% for Training and 35% for Testing analysis: 

65% Training Data 35% Testing Data 

 Figure 2: Split data for training and testing 

A. Rolling windows with adjusting training size and 

Constant training size 

When applying rolling windows to time series modeling with 

deep learning or machine learning, we can use adjusting 

training size or constant training size methods to iteratively 

train and test the typical. These tactics are considered to 

appraise the performance of a model over time, ensuring 

adaptableness to the active patterns and trends in the dataset. 

Rolling window procedures split the time series data into 

training and testing sets by sliding the window frontward step-

by-step through the dataset. Simulating real-world projecting 

tasks where the forthcoming must be predicted based on 

historical dataset (Karthikeyan, Khosa and Singh, 2020). By 

integrating rolling windows with either altering training size 

or constant training size, we can figure robust and flexible 

models for univariate and multivariate time series data. The 

choice of tactic depends on the features of dataset and the 

precise goals of the modeling task.  

 
Figure 3: Rolling windows with adjusting training size and 

Constant training size 

Observations: The training set (Figure 3) raises over time as 

the window inflates to include more historical data. Each split 

adds more historic data to the training set, while the validation 

set remains static in size. The blue line signifies the rising 

training dataset, and the orange line signifies the fixed 

authentication dataset. The training set size remains constant, 

directing on a fixed antique window of data. The training 

window changes forward in time, while the validation set also 

moves consequently. Both training and validation sizes are 

kept reliable across splits. 
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Flowchart 1: Process flow and Data organization 

D. Time series prediction to forecast the future groundwater 

levels, considering factors such as water table depth, parapet 

height, and geographical directs comparing the latitude and 

Longitude perspective. 

 

Table 1: For depth, parapet height, and geographical directs 

Application and Summary of SVR, RF, KNN, LSTM, GRU, LSTM+GRU algorithms. This graph provides a visual comparison of the 

performance of different machine learning algorithms in predicting GWL in Chittagong applying the Train and Test perspective. 

 
Table 2: performance of different machine learning algorithms 

III. MODELING AND 

SIMULATION 
A. Univariate Time Series Forecasting for 

Groundwater Level (GWL): 

Ensure data consistency by handling missing values and 

smoothing out noise. Apply scaling (e.g., Min-Max Scaling or 

Standardization) for better convergence during model 

training. Use stationarity tests to check if the time series is 

stationary. Apply differencing or transformations if needed. 

Evaluate performance using metrics.  

 
Figure 4: GWL chart, water level 

Observations: The variations seem (Figure 4) to developed 

less extreme in the later years (2014-2017), with the line 

becoming slightly more stable and reliably higher.  Sharp drop 

near the end of 2017, but it rapidly improves. 

 
Figure 5: Original Vs predicted GWL (SVR) 

Observations: There's a visible (Figure 5) enhancement in the 

model's forecasts after 2014, where the projected lines more 

closely follow the original data. Water level usually stays 

between 8 and 12 meters all over the period. 

 

Figure 6: Original Vs predicted GWL (RF) 

Observations: The model's forecasts seem (Figure 6) to 

progress after 2014, with closer alignment to the original data. 

The water level mostly stays between 8 and 11 meters all over 

the period. There's a visible dip in water levels around 2010, 

captured by all three lines. 

 

Figure 7: Original Vs predicted GWL (LSTM) 

Observations: The model seems (Figure 7) to capture the 

overall trend well but misses some of the extreme highs and 

lows in the original data. Towards the later years (2015-2017), 

the predicted lines align more closely with the original data, 

suggesting possibly improved model performance or more 

stable water levels. 

 

Sl District Well Id Water Level If R l Parapet (M) Parapet 

Height 

(M) 

Depth (M) Latitude Longitude 

1 Chattogram GT1541007 10.42 4.6 0.68 4.31 22.32771 91.80986 

2 Chattogram GT1541007 10.32 4.6  0.68 

0.68 

4.31 22.32771 91.80986 

3 Chattogram GT1541007 8.22 4.6  4.31 22.32771 91.80986 

4 Chattogram GT1541007 8.32 4.6 0.68 4.31 22.32771 91.80986 

5 Chattogram GT1541007 9.30 4.6 0.68 4.31 22.32771 91.80986 
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Figure 8: Original Vs predicted GWL (LSTM+GRU) 

Observations: The blue line (original data) varies but 

generally shows (Figure 8) stability over the years, with minor 

cyclical or irregular variations. The red line overlaps with the 

blue line in the training phase, signifying the model has 

captured the trends in the training data effectively. The green 

line in the test phase also strictly follows the blue line, 

signifying that the model simplifies well to invisible data. 

Overall, the forecast GWL values (both for training and 

testing) align thoroughly with the original GWL, reflecting a 

good fit of the analytical model to the data. 

B. Multivariate Time Series Forecasting for 

Groundwater Level, Rainfall, Temperature, Root and 

Surface Soil Witness, Depth to Groundwater level. 

Multivariate time series involves analyzing multiple variables 

simultaneously, considering their interactions and joint impact 

on the target variable. In addition to neural networks, 

traditional machine learning models can simulate and forecast 

time series, especially when the problem is less complex or 

data is limited (Abdollahi, Bazrafshan and Razmjooy, 2020). 

Assess interdependence by calculating cross-correlation 

between predicted and actual variables.  

 

Figure 9: Water Level analysis 

Observations: There's a notable sharp (Figure 9) drop near the 

beginning of 2010, but it quickly recovers. After 2010, the 

water level remains mostly consistent with minor variations. 

 

Figure 10: Temperature analysis 

Observations: Highest peaks (Figure 10) reach around 30-32 

degrees, while lowest points dip to 17-20 degrees. This 

cyclical pattern repeats consistently each year throughout the 

time period shown. 

 
Figure 11: Humidity analysis 

Observations: The humidity (Figure 11) levels generally 

fluctuate between 10 and 22.5 units. Consistent of annual 

patterns, representing seasonal changes in humidity.    

 

Figure 12: Rainfall analysis 

Observations: Displays (Figure 12) sporadic spikes of varying 

heights throughout the time period. Most of the time, rainfall 

is low or zero, with occasional sharp increases. The highest 

spike reaches about 120 units, occurring around 2016. 

 
Figure 13: Surface root witness analysis 

Observations: The cycles appear (Figure 13) be seasonal, with 

peaks occurring roughly. Variation in the patterns between 

years, but overall cyclical nature remains consistent. 

 
Figure 14: Root soil witness 

Observations:  The graph exhibits (Figure 14) a strong 

periodicity, with peaks occurring approximately once every 

year, suggesting an annual cycle. The peaks and troughs are 

consistent in amplitude and timing, which might indicate a 

naturally occurring phenomenon like annual rainfall, 

temperature fluctuations, or crop cycles. Near the end of 2017 

and the start of 2018, the pattern slightly deviates, with a dip 

or regularity that could signify a disruption in the typical 

cycle. 

 
Figure 15: Numerical time series graphs 

Observations: This image shows 9Figure 15) a set of six time 

series graphs, each representing different environmental 

variables from 2010 to 2017. Each graph includes an 

Augmented Dickey-Fuller (ADF) statistic and p-value, along 

with critical values, indicating tests for stationarity. All graphs 

have negative ADF statistics and p-values of 0.000, 

suggesting that these time series are stationary (do not have 

unit roots). The critical values provided are the same for all 

graphs, indicating consistent testing parameters. This 

compilation of graphs provides a comprehensive view of 

various interrelated environmental factors over time, useful 

for studying climate patterns, agricultural conditions, or 

hydrological cycles. 

IV. FINDINGS AND 

RECOMMENDATIONS 
The DL and ML models could categorize the lagged 

relationships and seasonality patterns that should be 



Global Journal of Engineering and Technology [GJET].  ISSN: 2583-3359 (Online) 

*Corresponding Author: Ashraf Shahriar                              © Copyright 2024 GSAR Publishers All Rights Reserved 

                     This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Page 34 

influenced the behavior of the variables over time. The study 

could expose nonlinear relationships and interactions between 

the ecological variables such as neural networks, are well-

suited for capturing complex, nonlinear changing aspects in 

multivariate time series data (Mojid, Parvez, Mainuddin and 

Hodgson, 2019).  The study area might validate the superior 

calculation accuracy of DL and ML models associated to the 

traditional statistical approaches for time series forecasting. 

Uncertainty breakdown could afford to the decision-makers 

with a more nuanced considerate of the reliability and 

restrictions of predicting consequences. The interdisciplinary 

nature of the study could foster relationships among 

hydrologists, climatologists, agronomists, and data scientists 

to address the complex water-related challenges from multiple 

viewpoints (Aishwarya and Vasudevan, 2023). The models 

confirmed varying degrees of correctness in forecasting the 

groundwater levels, with some outperforming others in the 

certain circumstances. Implementing multivariate time series 

estimating models that concurrently forecast multiple 

variables of interest that allows for capturing the complex 

interactions and response loops amid ecological variable 

quantity. Normalizing the input variables to ensure that they 

are on a similar scale and facilitate convergence during 

training. Reflects using collective approaches to combine 

estimates from multiple models or model alternatives. 

Measuring the uncertainty associated with the model forecasts 

and evaluate the sensitivity of outcomes to differences in 

input parameters and model assumptions. Authenticate the 

predicting models using independent datasets and real-world 

observations to govern generalizability and applicability in 

effective backgrounds. 

V. RESULTS 
A. Loss Score 

Loss Score shows, how widely loss originate where are three 

loss functions in the six of our algorithms. Most losses 

originate to the RMSE amongst the algorithms. The number 

oscillated amongst 1.22 and 3.80 for RMSE. By distinction, 

the MAE and the MSE acknowledged scarcer losses 

correspondingly. The quantity of wounded which originate the 

MSE vacillated from 2.91 to 3.84 from SVR to RF. The 

fatalities loss diminished in LSTM and then augmented in 

LSTM+GRU. So, the tendency for the RMSE was the almost 

similar. There was a fluctuation rise in losses from SVR to 

KNN. The loss decreased in LSTM and then increased in 

LSTM+GRU.  

B.  Accuracy Score 

Accuracy Scores stretches of evidence approximately how 

much accurateness found two accuracy purposes in the six of 

the total algorithms. Test R2 Score is the actual accuracy 

score of the algorithms. As can be seen from the graph, there 

were different trends for Train R2 Score and Test R2 Score. 

The quantity of Train R2 Score increased -0.220 to 0.90 for 

SVR and RF harmoniously. Subsequently Train R2 Slash 

progressively deteriorated to 0.226 in the LSTM+GRU 

algorithms. On the other hand, the Test R2 Score fluctuated 

between 0.223 to 0.226 for SVR and GRU+LSTM 

respectively. The highest accuracies are found in RF and 

LSTM algorithms which is about 0.226 for both. 

 

Figure 16: Accuracy score  

 
Figure 17: Loss Score 

C. Accuracy Score of heatmap:  

To illustrate the accuracy score of a heat map in a framework 

as, several issues need to be measured, as heat maps are 

visualization tools rather than direct assessing metrics.  

(I) Workflow to Determine Accuracy: 

 Train the Neural Network Model 

 Illustrate the Model Performance 

 Quantify Accuracy of Predictions 

(II) Specific Terms and applications: 

 To ensure the feature Importance Metrics  

 Correlation Scores among the application of 

Algorithms  

 Interpretability should align with expected 

domain knowledge 

 
Figure 18: Accuracy Score Heatmap correlation of 

algorithms 

Observations: This heatmap suggests (Figure 18) that models 

are producing very similar predictions, with only slight 

variations. High correlations indicate the different algorithms 

are capturing similar patterns, which could be interpreted as a 

sign of robust modeling or, alternatively, might suggest that 
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simpler models could be sufficient if all perform so similarly. 

Most of the correlations are very high, ranging from 0.98 to 

1.0, indicating strong positive relationships between the 

different models' predictions (Fawaz and Weber, 2019).    

VI.  CONCLUSION 
By combining deep learning and machine learning analytics 

with univariate and multivariate time series forecasting 

techniques, this can advance the analytical models that 

capture the complex interactions between groundwater 

dynamics, rainfall, temperature, soil moisture, and other 

ecological variable quantity (Gharbi and Bouaziz, 2023). 

These models can help stakeholders anticipate fluctuations in 

water accessibility, improve reserve allocation, and moderate 

the influences of climate unpredictability and variation. Train 

the particular models by means of the training data and tune 

hyper restrictions using the authentication set. Applications of 

univariate analytics Predicting stock prices, energy 

consumption, or sales trends and for the multivariate are 

Weather forecasting, demand planning in supply chains, or 

predicting disease progression in healthcare. This article to 

serve as an insightful and comprehensive resource for 

researchers and experts in the area. 
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