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Abstract 

This research explores the modeling and simulation of groundwater dynamics applying the 

univariate and multivariate time series forecasting. The univariate analysis focuses on 

groundwater levels, whereas the multivariate analysis integrates related variable quantity such 

as rainfall, temperature, root and surface soil witness, and depth to groundwater level. The 

incorporation of progressive computational systems such as deep learning and machine learning 

offers significant enhancements in analytical exactness and model robustness compared to 

traditional numerical approaches. Key results of this study comprise the expansion of projecting 

models that can be used to estimate groundwater levels based on the existing and historic data of 

related variable quantity. The developed models can support policymakers and stakeholders in 

making informed results concerning groundwater usage and maintenance.       

Keywords: Univariate, Multivariate, Temperature, Humidity, Rainfall, Surface Soil Witness, Time 

Series Forecasting. 

I. INTRODUCTION 
This study offers a comprehensive view of how advanced 

analytics techniques like Deep Learning (DL) and machine 

Learning (ML) can be applied to the time series forecasting, 

particularly in groundwater management and environmental 

monitoring. Developing methods to interpret the decision-

making processes of DL models to better understand the 

relationship between variables. The relationships between 

multiple climatic and environmental factors, modeled together 

to improve prediction accuracy (Adhikari and Ikeda, 2020). 

Rainfall modeling and simulation are decisive tools for 

considerate and forecasting rainfall patterns. Particular 

temperature modeling supports in predicting weather, 

reviewing climate variation, and dealing agricultural 

performs. More than a few machine learning algorithms can 

be castoff for research to find the above statements analysis, 

as well as Support Vector Regression (SVR), Random Forest 

(RF), K-Nearest Neighbors (KNN), Long Short-Term 

Memory (LSTM), and Gated Recurrent Units (GRU). The 

emphasis of the research has been fascinated on current 

enlargements, advancements, margins and insufficiencies of 

Advanced Neural Networking (ANN) tactics by using the 

Deep Learning system (Gharbi and Bouaziz, 2023). The 

relevant and expected measurements’ level data were 

employed to train and test the Neural Network. With the 

usage of the proficiency principles, mean square error (MSE), 

root mean square error (RMSE), and other metrics, each 

network structure's prediction accuracy was evaluated (R2). 

Results have been demonstrated the time series forecasting in 

neural network (NN) model in the area of Mymensingh that is 

located in the Latitude 24.88833 and Longitude 90.46861. 

II. METHODOLOGY 
Data Collection 

Appropriate data was collected from NASA for multivariate 

and Bangladesh Water Development Board (BWDB) for 

univariate time series analysis.  

A. Loss and accuracy function 

R-squared (R2) is a numerical formation where indicates, 1 = 

best, 0 or < 0 = worse. If the extent of loss function is high, it 

means algorithm is presentation a lot of alterations the 

consequence and desires be amended. 
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Figure 1: Application of algorithms, loss and 

accuracy 

Observations: RF appears (Figure:1) the highest Test R2 

Score, close to 0.7. The. LSTM and GRU perform well, 

scores slightly lower than RF. SVR and the LSTM+GRU have 

similar performance, with scores around 0.5. And the KNN 

seems the lowest score among the algorithms.  

A. Split data for Training and Testing 

The input data is split as training and testing: 

 
Figure 2: Split data for training and testing 

 

Figure 3: Split data for training and testing with 

periodical analysis 

Observations: All graphs show (Fugure:3) a cyclical pattern 

in the data, suggesting seasonal variations in water levels. The 

main difference between the left and right columns is the 

training size approach. The training data shows a cyclical 

pattern with peaks and troughs, likely indicating seasonal 

variations in the water levels. 

A. Model Setup and Data format (Flowchart:1) 

 
Flowchart 1: Data collection method and applicable 

research forming 

D.  Research Design and process setup (Flowchart:2) 

 
Flowchart 2: Research and process flow 

E. Time series prediction to forecast the future 

groundwater levels, considering factors such as 

water table depth, parapet height, and geographical 

directs (Table:1). 

 
Table 1: water table depth, parapet height, and 

geographical directs. 

Application and Summary of SVR, RF, KNN, LSTM, GRU, 

LSTM+GRU algorithms. Graph provides a visual comparison 

of the performance of different machine learning algorithms 

in predicting GWL in Mymensingh (Table:2). 

 
Table 2: visual comparison of the performance of different 

machine learning algorithms 

III. MODELING AND 

SIMULATION 
Univariate Time Series Forecasting for Groundwater Level 

(GWL) 
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Figure 4: GWL chart, water level Mymensingh 

Observations: Relatively consistent across the years 

(Figure:4), though there are some variations in the extremes 

from year to year. There appears to be more frequent and 

rapid fluctuations in some years compared to others. Recent 

data (around 2020) shows a sharp rise in water levels after a 

period of relative stability. 

 

Figure 5: Original Vs predicted GWL of Mymensingh by 

SVR 

Observations: The model seems (Figure:5) to capture the 

overall trends and seasonality, but it doesn't always match the 

exact peaks and troughs of the original data. There appears to 

be more variation in the prediction accuracy during certain 

periods, particularly in the test set.  

 
Figure 6: Comparison between original GWL vs predicted 

GWL chart of Rajshahi by RF 

Observations: The model seems (Figure:6) to capture the 

overall trends and seasonality, but doesn't always match the 

exact peaks and troughs of the original data. There appears to 

be more variation in the prediction accuracy during certain 

periods, particularly in the test set. 

 
Figure 7: Comparison between original GWL vs predicted 

GWL with chart by KNN 

Observations: The KNN model seems (Figure:7) to capture 

the overall trends and seasonality, but doesn't always match 

the exact peaks and troughs of the original data. There appears 

to be more variation in the prediction accuracy during certain 

periods, particularly in the test set.  

 

Figure 8: Comparison of original GWL price vs predicted 

GWL chart of by LSTM 

Observations: Both prediction lines (red and green) seem 

(Figure:8) to capture the overall seasonal patterns of the 

original data but smooth out the short-term variations. The 

original data shows peaks reaching around 14 meters and 

troughs as low as 6 meters. 

 

Figure 9: Comparison between original GWL vs predicted 

GWL chart of GRU 

Observations: The model's predictions seem (Figure:9) to 

capture the overall trend but miss some of the short-term 

variability present in the original data. There's a noticeable 

gap in the original data around 2020, where the blue line is 

absent. 

 

Figure 10: Comparison between original GWL vs 

predicted GWL chart of Mymensingh by LSTM+GRU 

Observations: The model seems (Figure#10) to capture the 

overall trend and seasonality of the groundwater levels, but it 

doesn't always match the exact peaks and troughs of the 

original data. There's a noticeable gap in the original data 

around 2019, which the model appears to interpolate. The 

seasonal pattern shows higher water levels (peaks) occurring 

roughly annually, possibly corresponding to wet seasons or 

monsoons.   

 

B. Multivariate Time Series Forecasting for 

Groundwater Level, Rainfall, Temperature, Root 

and Surface Soil Witness, Depth to Groundwater 

level. 

 

Figure 11: Multivariate analysis, profile soil moisture, 

Rajshahi zone 

Observations: The amplitude of these cycles varies 

(Figure#11) from year to year, with some years showing more 

extreme highs and lows than others. There appears to be a 
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slight overall increasing trend in the peaks over the years, 

though this would need statistical verification. The cycles are 

not perfectly regular, with some years showing broader peaks 

or multiple peaks 

 

Figure12:  Multivariate analysis, water level, Mymensingh 

zone 

Observations: There's a clear cyclical pattern (Figure:12), 

likely representing seasonal variations in water level. Peaks 

generally occur around same time, possibly corresponding to 

wet seasons. Amplitude of cycles varies from year to year, 

with some years showing higher peaks than others. 

 
Figure 13: Multivariate analysis, temperature, 

Mymensingh zone 

Observations: The overall pattern suggests (Figure:13) 

seasonal temperature changes, with higher temperatures in 

summer months and lower in winter. Temperature range is 

quite wide, indicating a climate significant seasonal variation. 

Like the top graph, there's no clear long-term trend visible in 

the temperature data. 

 

Figure 14: Multivariate analysis, humidity, Mymensingh 

zone 

Observations: There's a clear cyclical pattern (Figure:14), 

likely representing seasonal variations in humidity. The peaks 

generally occur at regular intervals, corresponding to annual 

wet seasons. The amplitude of the cycles is fairly consistent 

year to year, with peaks typically reaching around 20-22 units 

and troughs around 5-10 units. 

 

Figure 15: Multivariate analysis, Rainfall, Mymensingh 

zone 

Observations: There are clear spikes in rainfall (Figure:15), 

with some years showing more intense or frequent rainfall 

events than others. The rainfall appears to be highly seasonal, 

with periods of little to no rain followed by intense rainfall 

events. The highest rainfall spike appears to be in 2012, 

reaching about 80 units. 

 

Figure 16: Multivariate Analysis (surface soil witness), 

Mymensingh 

Observations: The pattern in graph is remarkably similar 

(Figure:16), indicating a strong correlation between surface 

and root zone soil moisture. There's no obvious long-term 

trend visible in either data set over this time period. Data 

gaps: There appears to be a gap in data around early 2014. 

 

Figure 17: Multivariate Analysis (root soil), Mymensingh 

Observations: The amplitude of the cycle varies from year to 

year (Figure:17), with some years showing more extreme 

highs and lows than others. The pattern in graph is remarkably 

similar, indicating a strong correlation between surface and 

root zone soil moisture.  There's no obvious long-term trend 

visible in either data set over this time period.  There appears 

to be a gap in data around early 2014. 

 

Figure 18: Multivariate Series (Soil, Temperature, 

Humidity, Rainfall, Surface Soil witness) 

Observations: Each graph includes the results of an 

Augmented Dickey-Fuller (ADF) test (Figure:18), which is 

used to test for stationarity in time series data. a p-value 

underneath 0.05. which Examine the ADF indicators range in 

next of kin to fundamental echelons. Breakdown of each 

graph: 

All graphs have ADF test results indicating stationarity This 

suggests that these time series don't have unit roots and their 

statistical properties are constant over time. The cyclical 

patterns in most graphs likely represent seasonal variations. 

The rainfall graph stands out as the most irregular, which is 

typical for precipitation data. These visualizations are useful 

for understanding the temporal patterns and relationships 

between different environmental variables, which could be 

important for hydrological or agricultural studies. 

 

Figure 19: Time Series Analysis (periodical status) 

Observations: The ADF test results suggest (Figure:19) that 

the time series is stationary (p-value < 0.05 and test statistic 
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more negative than critical values), which means it doesn't 

have a unit root and its statistical properties like mean, 

variance, and autocorrelation are constant over time. 

 

Figure 20: Prediction – MAE & RMSE, Depth to GWL 

analysis, Multivariate - Mymensingh 

Observations: This visualization is useful for assessing the 

model's performance (Figure:20) in predicting groundwater 

levels and understanding long-term trends and seasonal 

variations in the data. The relatively higher MAE and RMSE 

values indicate that there's room for improvement in the 

model's predictions. 

 

Figure 21: Multivariate Time Series Analysis (train set, 

prediction, ground truth) 

Observations: The historical data shows (Figure:21) a 

consistent seasonal pattern with peaks & troughs occurring 

regularly. Prediction line follows ground truth, suggesting 

good model performance. There's a notable spike in 

groundwater levels around 2021, captured by both the 

prediction and ground truth lines. The model seems to 

perform well in predicting both the overall trend and the 

seasonal fluctuations. 

 

Figure 22 Multivariate Time Series Analysis (Prediction: 

MAE, RMSE), ground truth 

Observations: The model's ability to capture (Figure:22) this 

cyclical pattern in its predictions. A reasonable match 

between predictions & ground truth in later years, though 

some discrepancies. Increased variability & potentially some 

anomalous behavior in the most recent data (2020-2022). 

IV. FINDINGS&RECOMMENDAT

IONS  
A. Major Findings 

 Temporal Dependencies: The DL and ML models 

could categorize the lagged relationships and 

seasonality patterns that should be influenced the 

behavior of the variables over time. 

 Nonlinear Relationships: The study could expose 

nonlinear relationships and interactions between the 

ecological variables such as neural networks, are 

well-suited for capturing complex, nonlinear 

changing aspects in multivariate time series data. 

 Variable Importance: By investigating feature 

importance in the predicting models, the most 

significant influences driving changes in the 

groundwater levels and soil moisture content. This 

could support the prioritize managing actions and 

involvements aimed at protective water resources 

and enhancing ecology resilience  

 Prediction Accuracy: The research and study area 

might validate the superior calculation accuracy of 

DL and ML models associated to the traditional 

statistical approaches for time series forecasting 

(Karthikeyan, Khosa and Singh, 2020).    

 Long-Term Trends: By studying the historic data 

and projecting future circumstances, the research 

could classify the long-term trends and fluctuations 

in the groundwater accessibility, precipitation 

regimes, and soil moisture dynamics associated with 

climate variation and anthropogenic effects. This 

information could update the adaptation approaches 

and water resource forecasting ingenuities.  

 Uncertainty Analysis: The study might calculate 

the uncertainty related with the model forecasts and 

assess the sensitivity of outcomes to the differences 

in input parameters, model structures, and figures 

sources. Uncertainty breakdown could afford to the 

decision-makers with a more nuanced considerate of 

the reliability and restrictions of predicting 

consequences. 

 Management Strategies: Grounded on the 

findings, the study could recommend adaptive 

managing approaches and policy references for 

sustainable water source management, and 

ecological protection. This could contain enhancing 

irrigation plans, applying water-saving technologies, 

and protective groundwater recharge zones.  

 Interdisciplinary Insights: The interdisciplinary 

nature of the study could foster relationships among 

hydrologists, climatologists, agronomists, and data 

scientists to address the complex water-related 

challenges from multiple viewpoints (Mojid, 

Parvez, Moinuddin and Hodgson, 2019).  

 Performance of the applied Algorithms: The 

utilization of the different predicting models, 

including SVR, RF, KNN, LSTM, GRU, and 

LSTM+GRU, was assessed effectively and have 

found the predictable outcome. The models 

confirmed varying degrees of correctness in 

forecasting the groundwater levels, with some 

outperforming others in the certain circumstances.  

B. Major recommendations  

      Data Quality and Availability: Confirm the high-

quality and consistent data for all variable quantity 
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of awareness, including groundwater levels, rainfall, 

temperature, and soil moisture. Apply multiple data 

sources, such as weather stations, soil sensors, and 

groundwater monitoring wells, to capture spatial 

and temporal changeability.  

  Feature Engineering: Conduct systematic feature 

engineering to the abstract expressive predictors 

from the raw data. Reflect integrating lagged 

variable quantity, seasonal indicators, and 

meteorological indices to capture chronological 

forms and dependencies.  

 Multivariate Modeling: Implement multivariate 

time series estimating models that concurrently 

forecast multiple variables of interest This allows 

for capturing the complex interactions and response 

loops amid ecological variable quantity (Abdollahi, 

Bazrafshan and Razmjooy, 2020). 

  Data Preprocessing: Preprocess and ensures the 

data sensibly, handling missing principles, outliers, 

and seasonality. Normalize the input variables to 

ensure that they are on a similar scale and facilitate 

convergence during training (Lundberg and 

Lee,2017).  

  Model Training and Validation: Divided the 

dataset into training, validation, and test sets to 

assess the evaluate of the models. Train the models 

by means of the training data and authenticate them 

using the validation set.  

  Joint Approaches: Reflect using collective 

approaches to combine estimates from multiple 

models or model alternatives. Ensemble methods 

such as bagging, boosting, and stacking can expand 

the predicting accuracy and robustness by 

leveraging the strengths of diverse algorithms.  

  Interpretability and Explainability: Develop the 

interpretability of the predicting models 

investigating the feature importance, variable 

contributions, and model forecasts.  

  Model Evaluation Metrics: Select the proper 

valuation metrics to evaluate the exactness and 

reliability of the predicting models. Common 

metrics consist of MAE, MSE, RMSE, R2. 

  Uncertainty Quantification: Measure the 

uncertainty associated with the model forecasts and 

evaluate the sensitivity of outcomes to differences 

in input parameters and model assumptions 

(Aishwarya and Vasudevan, 2023).  

  Validation and Application: Authenticate the 

predicting models using independent datasets and 

real-world observations to govern their 

generalizability and applicability in the effective 

backgrounds.  

V. RESULTS 
A. Loss Score 

 

Figure 23: Loss and Accuracy Score formation 

Observations: The quantity (Figure:23) fluctuated amongst 

1.11 and 2.40 for the LSTM+GRU and KNN consistently. By 

distinction, the MSE and the RMSE usual less losses. The 

quantity of losses which originate the MAE persisted identical 

which is 0.16 for SVR, RF, KNN and LSTM algorithms. At 

that moment the loss augmented in GRU which is 1.10 and 

diminished in LSTM+GRU which is 0.14. We can realize that 

the inclination for the MAE was fluctuated. The value for 

SVR, RF, KNN and LSTM algorithms are 1.11, 1.12, 1.11, 

1.12 correspondingly. Then the loss augmented in GRU which 

is 1.11 and diminished in GRU is 1.11. Test R2 Score is the 

authentic accuracy score of the algorithms. As can be seen 

from the graph, there were different trends for Train R2 Score 

and Test R2 Score. The value of Train R2 Score augmented 

0.68 to 0.90 for SVR and RF correspondingly. Subsequently 

that, the Train R2 Score intensely deteriorated to 0.20 in the 

GRU algorithms. This is the bottommost training accurateness 

over the above six algorithms. Then the value augmented to 

0.220 for LSTM+GRU algorithms. On the other hand, the 

Test R2 Score persisted almost same for SVR, RF, KNN and 

LSTM which is about 0.44. It diminished to 0.44 for SVR and 

increased to 0.46 for GRU. The lowest accuracy is found in 

GRU algorithm and the highest in LSTM+GRU.  

A. Accuracy Score Heatmap:  The below defined 

Accuracy Score Heatmap correlation of algorithms 

of Mymensingh: This shows the heat map 

correlation of SVR, RF, KNN, LSTM, GRU, 

LSTM+GRU algorithm.  

 
Figure 24: Accuracy Heatmap of Rajshahi 

Observations: The high correlations suggest (Figure:24) that 

most algorithms perform similarly, but the subtle differences 

could be important for selecting the most appropriate model 

for specific applications.  
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VI. CONCLUSION 
Predicting the future of Artificial Intelligence (AI) and Neural 

Networks (NN) contains inspecting current trends, technical 

developments, and probable applications to make informed 

forecasts about their future expansion. Computational models 

of NN help to test models of reasoning developments, such as 

consideration, intellectual, and decision-making. Forecasting 

the precise consequences can be challenging, understanding 

current trends and developing technologies can provide 

valued insights into the potential instructions of AI expansion. 

In this research, I have allied the performance of 

immeasurable machine learning algorithms, as well as SVR, 

RF, KNN, LSTM, GRU, and LSTM+GRU for Modeling and 

Simulation by Applying Deep Learning Univariate and 

Multivariate Time Series Forecasting in Neural Network 

Model for the leading divisional area of that is Rajshahi. 

Considerate the fundamental mechanisms and values 

governing the behavior of these models can be challenging, 

principally for deep learning architectures with millions of 

constraints (Cheng and Castelletti, 2020). Train the particular 

models by means of the training data and tune hyper 

restrictions using the authentication set. Employ methods such 

as cross-validation and grid search to improve the model 

performance. Abstract appropriate structures from the raw 

data that can capture the changing aspects and mutuality 

between the variables. These may include lagged variables, 

periodic indicators, and meteorological indices. I think this 

article to serve as an insightful and comprehensive resource 

for researchers and experts in the area. 
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