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Abstract 

The purpose of this study is to compare the performance of the MLE, LASSO, and Liu Estimator, 

and MLE methods in dealing with multicollinearity using simulated data with n=50,75,150, and 

300 in multinomial logistic model (p=6) with        and 0,99. The best model was compered 

using AIC, MSE, BIC.is the best based zn the MSE, SE, AIC, BIC values.  The result showed that 

LASSO and Liu Estimator methods were able to overcome partial multicollinearity in 3 

independent variables and full multicollinearity  6 independent variables much better than MLE 

method. This result is based on MSE, AIC, and BIC values of LASSO and Liu Estimator which 

are much smaller than those of MLE.   
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Introduction 
Multicollinearity refers to a condition where two or more 

independent variables in a logistic regression model have a 

strong and correlated relationship with each other. After 

multicollinearity appears, it can complicate data interpretation 

and make the logistic regression model unfavorable. The main 

problem that arises is the instability of the parameter 

estimates, where the variance of the estimates becomes very 

large (Montgomery & Peck, 1992). When in analyzing 

regression we want to make conclusion, the presence of 

multicollinearity makes it a serious problem that needs to be 

addressed.  Therefore, it is important to find the most suitable 

method to deal with multicollinearity. There are many 

methods to overcome this multicollinearity and even eliminate 

the multicollinearity, suggested by Jollife (2002). Of the many 

existing methods, the LASSO method is one of them, because 

it can shrink the regression coefficient to near zero or even 

exactly zero. The next method is Liu Estimator, which plays 

the same role as LASSO in overcoming multicollinearity 

whose estimator serves as a bias shrinking and generalization 

direct estimator. The multinomial logistic regression model 

requires that there is no multicollinearity between independent 

variables. If this happens, the parameter estimation will be 

poor. This study will compare which method is better between 

MLE, LASSO, and Liu Estimator in terms of overcoming 

multicollinearity in multinomial logistic regression based on 

the smallest MSE, SE, AIC, BIC values. 

MATERIALS AND METHODS 
Data 

In this study, we simulated data with n = 50, 75, 150, and 300 

containing full multicollinearity in 6 explanatory variables 

with (ρ = 0.99) and partial multicollinearity in 3 explanatory 

variables (ρ = 0.3) using the R package with 100 iterations.  

The explanatory variables are generated from Monte Carlo 

simulations: 
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Where ρ is determined in order to get a high correlation 

between the 6 explanatory variables. The dependent variable 

is derived from multinomial logistic regression probabilities 

for each category: 
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To see the value of multicollinearity in the data set, the 

variance variance inflation factor (VIF) is checked. 

Method 

LASSO 

According to Tibshirani (1996), LASSO coefficient 

estimation uses quadratic programming with inequality 

constraints.  The LASSO estimates are obtained from the 

following equation: 
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According to Hastie, et al. (2008), the LASSO method in 

logistic regression is applied by adding a LASSO penalty to 

the log-likelihood function to estimate the independent 

variable.  Therefore, the logistic regression estimator can be 

obtained by maximizing the log-likelihood function.  Logistic 

regression estimator for multinomial response variable with 

LASSO penalty in the following equation: 

 ̂            { ( ̂)   ∑ ∑ | ̂  |
 
   

 
   } (8) 

Liu Estimator 

Liu's method is a method in logistic regression that function as 

a biased shrinkage estimator and a method whose 

generalization is direct. Liu (1993) proposed the use of 

another estimator where the parameters obtained can serve as 

a linear function of the depreciation parameter d.  According 

to Qasim, et al (2019), determining the value of d in the Liu’s 

estimator is much simpler. Hoerl & Kennard (1970) suggested 

the following for the value of d in Liu’s method: 
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Furthermore, for the next value of d proposed and based on 

the concepts in Kibria (2003): 
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The following estimator is proposed where quantiles other 

than the median are used, and this approach was successfully 

applied by Khalaf & Shukur (2005): 
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Maximum Likelihood Estimation 

Besides LASSO and Liu Estimator that can estimate logistic 

regression parameters, another method is Maximum 

Likelihood Estimation (MLE).  Because this study uses 

multinomial logistic regression, according to Kleinbaum & 

Klein (2010), the response variable is also multinomial, so the 

likelihood function is adjusted to the multinomial distribution.  

According to Hosmer & Lemeshow (2000), the parameter 

chosen is the one that maximizes the likelihood function. The 

general form of the Maximum Likelihood method parameter 

estimation function 

is:        ∏   
         

         
            

               

dimana                   . 

RESULTS AND DISCUSSION 
The simulated data in this study has 6 explanatory variables, 

and there are 2 versions, namely, first, only 3 independent 

variables contain multicollinearity, and second, all 

independent variables contain multicollinearity. 

Multicollinearity is checked through VIF and correlation 

values.  The results of the analysis of simulated data with n = 

50, 75, 150, and 300, and the   is 0.3 and 0.99 which causes 

the simulated data to contain high multicollinearity.  In this 

study, LASSO and Liu Estimator can overcome the high 

multicollinearity problem, while MLE can only overcome 

multicollinearity when 3 independent variables contain 

multicollinearity when n=300 and 6 independent variables 

contain multicollinearity when n=150. 

The analysis result in Tables 1 to 4 show that LASSO and Liu 

Estimator appear to have smaller MSE, AIC, and BIC values 

than MLE for the 3 independent variables multicollinearity 

when the samples are 50 and 75, and 150, but when the 

sample is 300, the MSE value of MLE is smaller than Liu 

Estimator. 

Table 1: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=50 

       

 MSE 25726.44 

MLE AIC 37.3399 

 BIC 50.7241 

 MSE 0.158605 

LASSO AIC 29.8598 

 BIC 45.1311 

 MSE 0.0523 

Liu Estimator AIC 29.3399 

 BIC 44.6361 

Table 2: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=75 

       

 MSE 2605.016 

MLE AIC 54.4793 

 BIC 70.7017 

 MSE 0.07816 

LASSO AIC 46.9703 

 BIC 65.4974 
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 MSE 0.0530 

Liu 

Estimator 

AIC 46.4793 

 BIC 65.0192 

Table 3: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=150 

        

 MSE 0.09758 

MLE AIC 104.4535 

 BIC 125.5279 

 MSE 0.03319 

LASSO AIC 96.9519 

 BIC 121.0623 

 MSE 0.0510 

Liu Estimator AIC 96.4534 

 BIC 120.5385 

Table 4: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=300 

        

 MSE 0.04052 

MLE AIC 186.9717 

 BIC 212.8982 

 MSE 0.02194 

LASSO AIC 179.4671 

 BIC 209.0698 

 MSE 0.0510 

Liu Estimator AIC 178.9717 

 BIC 208.602 

 

Figure 1: Graph of MSE value of MLE method when 3 

independent variables contain multicollinearity 

 
Figure 2: Graph of MSE value of LASSO method when 3 

independent variables contain multicollinearity 

 
Figure 3: Graph of MSE value of Liu Estimator method 

when 3 independent variables contain multicollinearity 

Figures 1, 2, and 3 show the graphical comparison of MSE 

values for MLE, LASSO, and Liu Estimator.  Which result in 

that LASSO and Liu Estimator have smaller MSE values than 

MLE. 

The analysis results in Tables 5 to 8 show that LASSO and 

Liu Estimator have smaller SE, MSE, AIC, and BIC values 

than MLE for the 6 explanatory variables that contain 

multicollinearity. 

Table 5: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=50 

       

 MSE 72447.83 

MLE AIC 32.1249 

 BIC 45.5090 

 MSE 0.9790 

LASSO AIC 24.6447 

 BIC 39.9160 

 MSE 0.0588 

Liu Estimator AIC 24.1249 

 BIC 39.4211 

Table 6: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=75 

  

    

 

 MSE 1602.587 

MLE AIC 43.6510 

 BIC 59.8734 

0

10000

20000

30000

MLE

50 75 150 300

0

0.05

0.1

0.15

0.2

LASSO

50 75 150 300

0.05

0.051

0.052

0.053

0.054

Liu
Estimator

50 75 150 300



Global Scientific and Academic Research Journal of Multidisciplinary Studies ISSN: 2583-4088 (Online) 

*Corresponding Author: Siska Ayuditya Saputri                               © Copyright 2024  GSAR Publishers All Rights Reserved  Page 11 

 MSE 1.1947 

LASSO AIC 36.1421 

 BIC 54.6692 

 MSE 0.0590 

Liu Estimator AIC 35.6510 

 BIC 54.1909 

Table 7: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=150 

        

 MSE 0.5220 

MLE AIC 74.8202 

 BIC 95.8946 

 MSE 0.10102 

LASSO AIC 67.3186 

 BIC 91.4290 

 MSE 0.05370 

Liu Estimator AIC 66.8202 

 BIC 90.9053 

Table 8: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=300 

        

 MSE 0.1603 

MLE AIC 135.9484 

 BIC 161.8749 

 MSE 0.0715 

LASSO AIC 128.4438 

 BIC 158.0465 

 MSE 0.05374 

Liu Estimator AIC 127.9484 

 BIC 157.5786 

 

Figure 4: Graph of MSE value of MLE method when 6 

independent variables contain multicollinearity 

 

 

 

Figure 5: Graph of MSE value of LASSO method when 6 

independent variables contain multicollinearity 

 
Figure 6: Graph of MSE value of Liu Estimator method 

when 6 independent variables contain multicollinearity 

Figures 4, 5, and 6 show the graphical comparison of MSE 

values for MLE, LASSO, and Liu Estimator.  Which result in 

that LASSO and Liu Estimator have smaller MSE values than 

MLE. 

Table 9: MSE, AIC, and BIC values of LASSO, MLE, Liu 

Estimator Methods for n=150 

Multicollinearity  MLE LASSO Liu 

Estimato

r 

 n = 

50 

25726.4

4 

0.15860

5 

0.0523 

         n  

= 

75 

2605.01

6 

0.07816 0.0530 

 n = 

15

0 

0.09758 0.03319 0.0510 

 n = 

30

0 

0.04052 0.02194 0.0510 

 n = 

50 

72447.8

3 

0.9790 0.0588 

                 n = 

75 

1602.58

7 

1.1947 0.0590 

 n = 

15

0 

0.5220 0.10102 0.05370 

 n = 

30

0.1603 0.0715 0.05374 
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To determine the best method, we used the Mean Square 

Error (MSE), Akaike Information Criterion (AIC), and 

Bayesian Information Criterion (BIC) of the models obtained 

using the three methods studied which can be seen in tables 1 

to 8. Liu Estimator has the smallest AIC and BIC values 

compared to LASSO and MLE. It can also be seen that 

LASSO and Liu Estimator have smaller MSE values than 

MLE, which means that the best methods are LASSO and Liu 

Estimator.  Table 9 shows that LASSO and Liu Estimator are 

able to overcome multicollinearity because they have the 

smallest MSE value compared to MLE. 

 

Figure 7: Graph of MSE values in LASSO and Liu 

Estimator when 3 independent variables are correlated 

 
Figure 8: Graph of MSE values in LASSO and Liu 

Estimator when 6 independent variables are correlated 

Based on Figure 7, when the 3 independent variables are 

correlated when the samples are 50 and 75, Liu Estimator has 

a smaller MSE value than LASSO, but when the samples are 

150 and 300, LASSO has a smaller MSE value than Liu 

Estimator.  Furthermore, in Table 8 on the data of 6 correlated 

independent variables, in all samples Liu Estimator 

outperforms LASSO because it has a smaller MSE value 

compared to LASSO. This means that Liu Estimator can 

overcome multicollinearity problems in all samples when 6 

independent variables are correlated. 

CONCLUSION 
Based on the results of the above research, it can be concluded 

that: 

1. In all samples studied n = 50, 75, 150, and 300 

when 3 independent variables contain 

multicollinearity and 6 independent variables 

contain multicollinearity, the LASSO and Liu 

Estimator methods are better than the MLE method 

to overcome multicollinearity.  

2. When n = 50 and 75 with 3 independent variables 

contain multicollinearity, Liu Estimator method is 

better than LASSO method, but at n = 150 and 300 

when 3 independent variables contain 

multicollinearity, LASSO method is better than Liu 

Estimator.  Then at n = 50, 75, 150, and 300 when 6 

independent variables contain multicollinearity, the 

Liu Estimator method is better used than LASSO 

because it is seen from the smaller MSE value of Liu 

Estimator compared to the LASSO method. 

3. Based on the AIC and BIC values, the Liu Estimator 

method is better used to estimate the model 

compared to LASSO and MLE. 
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