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Abstract:  

In this paper, a novel method for finger vein segmentation in infrared images based on a model 

that represents the intensity distribution along a cross-sectional profile of vein, is proposed. The 

method is based on model fitting of brightness intensities over a local neighborhood. A simple 

second-order degree polynomial is used in order to represent the brightness intensities along the 

cross-sectional profile of veins. Two different approaches are adopted. According to the first, a 

multiscale multidirectional model fitting is performed based on the assumption that the second-

order derivative on a vein pixel is positive. The second is based on multiscale model fitting of 

intensities in a single direction using two assumptions about the intensities of the profile of veins. 

According to the first assumption, the second-order derivative is positive on a vein pixel and 

according to the second, the first-order derivative is zero on a vein pixel which means that the 

pixel belongs to vein centerlines. The proposed method is robust, in both approaches, as the 

experimental results show and it achieves high evaluation rates in terms of sensitivity, specificity, 

and accuracy.     

1. Introduction  
The problem of finger vein extraction arises mainly for 

biometrics purposes but it is also very important for the 

biomedical research community. Personal identification, 

which is the main application target in biometrics, can be 

applied to a wide range of applications including area access 

control, PC login, and e-commerce. Biometric systems like 

fingerprint, face, iris, retina, voice, and hand geometry 

recognition do not ensure necessarily confidentially because 

the estimated features can be recorded and reproduced by 

other means and suffer from several important weaknesses 

such as theft, loss, and reliance on the user’s memory met in 

conventional methods such as keys, passwords, and PIN 

numbers. A biometric system which uses vein patterns 

overcomes these problems because the information used for 

identification include human biological attributes which are 

memory less, inside the human body. 

Vein or vessel extraction is also very useful in several 

biomedical imaging applications, i.e. for diagnosing in 

vascular pathology. The inspection of angiogenesis in the 

human body can be used for early diagnosis of several 

diseases, both in healthy tissue for healing wounds and for 

restoring blood flow to tissues after injury or insult. Also, 

inspection of the retinal vasculature may reveal hypertension, 

diabetes, arteriosclerosis, cardiovascular disease, and stroke. 

Early detection of glaucoma, the second commonest cause of 

blindness in the West and the commonest cause of blindness 

worldwide, can be detected by inspection of the retinal 

vasculature. 

The problem of finger vein pattern extraction from infrared 

images mainly involves the segmentation of the acquired 

images in two regions: vein and tissue. In these images, the 

veins appear darker than the surrounding tissue, due to strong 

absorption of light from the hemoglobin molecules, and they 

have a concave shape cross-sectional profile. This property 

can be used to facilitate the segmentation process and several 

researchers use the concave shape of the vein to achieve better 

segmentation results [6-7, 8, 14]. Primitive segmentation 

methods based on simple global thresholding techniques 

proved inadequate due to the fact that other parts of the finger 

have similar brightness and the image histogram is not 

bimodal. Moreover, infrared images suffer from several 

shading artifacts produced mainly due to uneven illumination, 

poor acquisition conditions, and fingerprint noise. Thus, 

brightness normalization and shading correction are popular 

preprocessing modules in such applications. 

An application-specific vein pattern extraction method and a 

biometric identification system are presented in [1]. Typically, 

the vein pattern recognition algorithm consists of an original 

image-grabbing process, image preprocessing, and 

recognition. The preprocessing part consists of an iterative 

Gaussian low pass filter, a high pass filter, and a modified 

median filter [4]. In [1, 2, 4] low-pass spatial filtering for 
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noise removal and high pass spatial filtering for enhancing 

vascular patterns are used for vascular segmentation. 

An improved vein pattern extraction algorithm is proposed in 

[3], which compensates the loss of vein patterns in the edge 

area, giving better image enhancement, improved vein pattern 

information, and better performance than the rate reported in 

[1]. The problem arising from the iterative nature of filtering 

preprocessing is solved by designing a filter that is used only 

once, significantly improving the recognition speed and 

simplifying the hardware complexity, using a Field 

Programmable Gate Array device (FPGA). The Fa1se 

Acceptance Rate (FAR) is five times better than the existing 

algorithm and the recognition speed is measured to be 100 

ms/person.  

In [5], a direction-based vascular pattern extraction algorithm 

based on the spatial information of vascular patterns is 

presented for biometric applications. It applies two different 

filters: row vascular pattern extraction filter for abscissa 

vascular pattern extraction, and column vascular pattern 

extraction filter for effective extraction of the ordinary 

vascular patterns. The combined output of both filters 

produces the final hand vascular patterns. Unlike the 

conventional hand vascular pattern extraction algorithm, the 

directional extraction approach prevents loss of the vascular 

pattern connectivity.  

Person identification based on finger vein patterns is 

presented and evaluated using line tracking starting from 

different positions [6-7]. Local dark lines are identified and 

line tracking is executed by moving along the lines pixel by 

pixel. When a dark line is not detectable, a new tracking 

operation starts at another position. This iterative procedure 

detects the same line multiple times, so the line detection 

frequency is used to estimate the pixel vein probability. 

An algorithm for finger vein pattern extraction in infrared 

images is proposed in [8]. The low contrast images, due to the 

light scattering effect, are enhanced and the fingerprint lines 

are removed using the 2D discrete wavelet filtering. Kernel 

filtering produces multiple images by rotating the kernel in six 

different directions, focusing into the expected directions of 

the vein patterns. The maximum of all images is transformed 

into a binary image. Further improvement is achieved by a 

two-level morphological process: majority filter smoothes 

contours and removes some misclassified isolated pixels, and 

a reconstruction process removes the remaining misclassified 

regions. The final image is segmented into two regions, vein 

and tissue.  

In [9], a certification system compares vein images for low-

cost, high-speed, and high-precision vein extraction. The 

equipment for authentication consists of a near-infrared (NIR) 

light source and a monochrome CCD to produce contrast-

enhanced images of the subcutaneous veins. In the recognition 

stage, phase correlation and template matching is applied. 

Several noise reduction filters, sharpness filters, and 

histogram manipulations are tested for best accuracy, giving 

in the overall system a high certification ratio. 

Segmentation and vein thinning methods are studied in human 

hand infrared images and two new methods for threshold-

based segmentation, based on endpoints, crossing points, and 

conditional thinning [10]. The distance-based matching 

experiments, used to detect vein patterns, show that this 

method is efficient for personal identification or verification 

purposes.  

A method for localizing surface veins via NIR imaging and 

structured light ranging is presented in [11]. The eventual goal 

of the system is to serve as the guidance for a fully automatic 

catheterization device. The proposed system is based on NIR 

imaging, which has previously been shown effective in 

enhancing the visibility of surface veins. The vein regions in 

the 2D NIR images are located using standard image 

processing techniques. A NIR line-generating LED module is 

used to implement structured light ranging and construct a 3D 

topographic map of the arm surface. The located veins are 

mapped to the arm surface to provide a camera-registered 

representation of the arm and veins.  

In [12-13], a Vein Contrast Enhancer (VCE) has been 

constructed to facilitate vein access by capturing an infrared 

image of veins, enhancing the contrast, and projecting the 

vein image back onto the skin in a typical displacement of 

0.06 mm. Clinical evaluation of earlier monitor-based vein 

enhancement test systems has demonstrated the clinical utility 

of the infrared imaging technology used in the VCE. 

In this paper, a novel method for finger vein segmentation in 

infrared images based on a model that represents the intensity 

distribution along a cross-sectional profile of vein, is 

proposed. The method is based on model fitting of brightness 

intensities over a local neighborhood. A simple second-order 

degree polynomial is used in order to represent the brightness 

intensities along the cross-sectional profile of veins. Two 

different approaches are adopted. According to the first, a 

multiscale multidirectional model fitting is performed based 

on the assumption that the second-order derivative on a vein 

pixel is positive. The second is based on multiscale model 

fitting of intensities in a single direction using two 

assumptions about the intensities of the profile of veins. 

According to the first assumption, the second-order derivative 

is positive on a vein pixel and according to the second, the 

first-order derivative is zero on a vein pixel which means that 

the pixel belongs to vein centerlines. The proposed method is 

robust, in both approaches, as the experimental results show 

and it achieves high evaluation rates in terms of sensitivity, 

specificity, and accuracy.     

The remainder of this paper is organized as follows. In section 

2, a detailed presentation of the proposed method for finger 

vein pattern extraction is given. In section 3, the experimental 

results are presented, and in section 4 the conclusions are 

given.  

2. Proposed method 
Fig. 1a shows an artificial finger vein image while Fig. 1b 

shows the distribution of intensities along a cross-sectional 

profile overlapped in the image of Fig. 1 (black line). As Fig. 
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1b shows, the distribution of intensities along a cross-

sectional profile of the vein has a parabolic shape.  

 
(a)                                                 (b) 

Fig. 1. a. Artificial finger vein image, b. Distribution of 

intensities along a cross-sectional profile. 

Thus, a simple second-order polynomial is used for fitting 

intensities over small local neighborhoods according to the 

well-known technique of sliding windows. The fitting is 

performed once for each desired scale and for every possible 

direction. The above procedure leads to an estimation problem 

of three unknown parameters (a, b, and c) for each pixel in 

every scale and direction. 

To be more specific, a sliding window of size (2w+1)x1, 

where 2w+1 is the width of the cross-sectional profile (black 

line in fig. 1a), is applied in every pixel and a second-order 

polynomial (1) is used for fitting of the intensities of the 

pixels lie in the window: 

 
2( )y f x a x b x c     

                    (1)  

, where x is the position of the pixel inside the sliding window 

(from –w to w), y is the corresponding intensity of brightness 

of the pixel located on x position and a, b, c are the 

parameters of the model to be estimated. 

In the sequel, based on the assumption that a pixel belonging 

to the vein network has the minimum intensity along the 

cross-sectional profile, the minimum of (1) is computed. 

Differencing equation (1) with respect to x it yields: 

     
2

dy
a x b

dx
   

.                       (2) 

On the other hand, the second-order derivative of (1) can be 

used for discrimination between concave and convex regions. 

The second-order derivative of (1) with respect to x shown in 

the following equation: 

  

2

2
2

d y
a

dx
 

.                               (3) 

The fitting of the model inside the window leads to an over-

defined system of equations, the solution of which gives the 

unknown parameters a, b, and c. 

 
, where W is the matrix of coefficients, u the vector of 

unknown parameters a, b, and c, and f the vector of intensities 

of the pixels lie in the window. Matrix W is invertible and 

thus the values of the unknown parameters can be estimated 

from the following formula:      

   
1u W f                      (5) 

By observing the first and second-order derivatives of 

equation (1) with respect to x the following assumptions can 

be made: 

Assumption 1. A pixel belongs to vein network if 
2

2
2 0 0

d y
a a

dx
    

.  

Assumption 2. A pixel belongs to vein centerlines if 

2 0
2

dy b
a x b x

dx a
       

 .   

Multiscale multidirectional model fitting. 

The first approach is based only on the first assumption, i.e. 

detection of concave regions (positive second-order 

derivative) inside a window. A simple second-order degree 

polynomial is fitted for every scale along a cross-sectional 

profile of veins in four different directions (0, 45, 90, and 135 

degrees). According to this approach, the estimation of the 

parameters of the model is performed for each pixel once for 

every scale w and for every possible direction θ. Thus, for 

every pixel multiple sets of parameters a, b, and c are derived:  

                                                              

1

w

w w w

w

a

u b W f

c



  





 
 

  
 
                   (6) 

, where wu   is the vector of unknown parameters a, b, and c 

at scale w and in the direction θ, wf  is the vector of 

intensities of pixels inside the window of size wxw pixels 

located in θ direction and W the vector of known coefficients.  

A pixel belongs to vein network if at a specific direction θ, 

parameters wa   are positive for all scales. The final pattern is 

extracted using the logical OR of the pixels satisfying the 

above condition in all directions. In cases where a lot of 
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misclassifications are apparent on the binary image, a post-

processing step is applied in order to remove the artifacts. 

This step includes a process known as length filtering. 

Multiscale model fitting in a single direction. 

The second approach is based on both assumptions. 

According to this vein, centerlines are detected by applying 

the procedure of estimation of the parameters of the model for 

each pixel once for every scale and in a single direction θ=0. 

Thus, for every pixel multiple sets of parameters a, b, and c 

are derived:  

                                                         

0

1

0 0 0

0

w

w w w

w

a

u b W f

c



 
 

  
 
   .                                (7) 

, where wu   is the vector of unknown parameters a, b, and c 

at scale w and in the horizontal direction (θ=0), wf  is the 

vector of intensities of pixels inside the window of size wxw 

pixels located in horizontal direction, and W the vector of 

known coefficients.  

A pixel belongs to vein network if at direction θ=0 all the 

parameters a are positive (Assumption 1: 0 0wa 
) and to 

vein centerlines if the value of x is near to zero (Assumption 2  

:

0
0

02

w
w

w

b
x Tr

a
 


) for each scale, where Tr is a 

predefined threshold. Ideally, in order for a pixel to belong to 

vein centerlines the threshold Tr, according to the second 

assumption, should have zero value. In practice, due to noise 

presence and intensity inhomogeneities which are present 

both in real and artificial images, this condition is not 

satisfied. Consequently, the value of threshold Tr is estimated 

experimentally. The final pattern is extracted using the logical 

OR of the pixels satisfying the above condition. In cases 

where a lot of misclassifications are apparent on the binary 

image a post-processing step is applied in order to remove the 

artifacts. This step includes a process known as length 

filtering. 

Length Filtering 

In some images small misclassified isolated regions appear. 

These regions are removed from the binary image for more 

accurate finger vein pattern extraction by applying a process 

called length filtering. According to length filtering, the 

procedure of noise elimination is implemented as follows: A 

region of connected pixels is estimated from the binary image 

using the rule of eight-pixel connectivity. All regions with 

size less than a predefined threshold, experimentally derived, 

are eliminated. The remaining regions, surviving after length 

filtering, constitute the final vein pattern.  

3. Experimental results 
Image Acquisition. The original image is acquired using 

infrared illumination and an inexpensive monochrome CCD 

camera. The finger is located between the camera and a row 

of five infrared leds with adjustable illumination. Due to 

strong absorption of the hemoglobin in the near-infrared 

spectrum the veins are located in the dark areas of the image. 

Fig. 2 shows the experimental device used for image 

acquisition while fig. 3 shows an original infrared finger vein 

image and the corresponding region of interest (ROI) image 

extracted from it. 

 
Fig. 2. Infrared image acquisition, experimental device. 

 
Fig. 3. a. Original infrared image b. ROI image. 

Fig. 4 shows the results of the application of the proposed 

method (first approach) in the ROI image of fig. 3. b. Fig. 4. a. 

shows the ROI image while figures 4. b., c., d., e. show the 

binary images in four different directions (0, 45, 90, 135) and 

for seven different scales (w=3, 5, 7, 9, 11, 13, 15). These 

images are produced using the logical AND along scale for 

each direction. Finally, fig. 4. f. shows the extracted finger 

vein pattern which is the logical OR of the above four images 

along direction. 
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Fig. 4. a. ROI image, binary images b. θ=0, c. θ=45, d. θ=90, 

e. θ=135 for scales w=3, 5, 7, 9, 11, 13, 15 and f. logical OR 

of images b., c., d., e. 

Fig. 5 shows the results of the application of the proposed 

method (second approach) on the ROI image of Fig. 3. b. Fig. 

5. a. shows the ROI image while figures 5. b., c., d., e., f., g., 

h.  show the binary images in seven different scales (w=3, 5, 

7, 9, 11, 13, 15) at a single (horizontal) direction (θ=0). These 

images are produced using a threshold value Tr=1. The 

selection of an appropriate value for the parameter Tr is a 

compromise between robust detection of the finger vein 

network and presence of artifacts in the final segmentation 

result. A larger value for this parameter produces a larger 

number of misclassified pixels. On the other hand, a selection 

of a small value for this parameter may result in a loss of a 

part of the finger vein network.  Finally, fig. 5. i. shows the 

extracted finger vein pattern which is the logical OR of the 

above seven images along scale. 

 
Fig. 5. a. ROI image, binary images b. w=3, c. w=5, d. w=7, 

e. w=9, f. w=11, g. w=13, h. w=15 for horizontal direction 

θ=0 and i. logical OR of images b., c., d., e., f., g., h. 

Artificial image database. A quantitative evaluation of the 

proposed method in real infrared images is difficult due to the 

absence of manual segmentation data. The extremely low 

contrast images increase the disagreement of human 

annotation. Therefore, the proposed method is evaluated using 

a small set of images, each one created by the weighted sum 

of the two artificial images. The first image is constructed 

using an artificial vein-like network. This network consists of 

connected lines of different widths with junctions and 

bifurcations and multiple low pass filtering to simulate the 

blurriness of the edges which is apparent to the real images 

due to the blood flow and scattering effects. The second 

artificial image is used to simulate the nonuniform image 

background of real infrared images which is created by 

applying an iterative spatial low pass Gaussian filter with a 

large window size to the original infrared image.  

Evaluation rates. In the finger vein segmentation process, 

each pixel is classified as tissue (non-vein) or vein. 

Consequently, there are four events, true positive (TP) and 

true negative (TN) when a pixel is correctly segmented as vein 

or non-vein, and two misclassifications, a false negative (FN) 

appears when a pixel in a vein is segmented in the non-vein 

area, and a false positive (FP) when a non-vein pixel is 

segmented as a vein pixel. 

Two widely known statistical measures are used for method 

evaluation: sensitivity and specificity, which are used to 

evaluate the performance of the binary segmentation outcome. 

The sensitivity is a normalized measure of true positives, 

while specificity measures the proportion of true negatives: 

  

TP
sensitivity

TP FN


 ,                          (8) 

        

TN
specificity

TN FP


 .                (9) 

Usually, there is a tradeoff between two measures. Finally, the 

accuracy of the binary classification is defined by:  

  

TP TN
accuracy

P N




 ,                  (10) 

where P and N represent the total number of positives (vein) 

and negatives (non-vein) pixels in the segmentation process 

and is the degree of conformity of the estimated binary 

classification to the true according to a manual segmentation. 

Thus, the accuracy is strongly related to the segmentation 

quality and for this reason, is used to evaluate and compare 

different methods.  

The proposed method is evaluated on the artificial image 

database. Each image of the set is constructed according to the 

above procedure.  

Table 1 shows the mean sensitivity, specificity, and accuracy 

of the proposed method on the artificial finger image database 

with the approach of multiscale multidirectional model fitting 

without post-processing while table 2 shows the same rates 

for the same approach with post-processing.   

Fig. 6 shows the first image of the artificial finger database 

and the corresponding vein network obtained by the 

application of the proposed method and the approach of 

multiscale multidirectional model fitting without post-

processing. Fig. 7 shows the first image of the artificial finger 

database and the corresponding vein network obtained by the 

application of the proposed method and the approach of 

multiscale multidirectional model fitting with post-processing.  

Table 3 shows the mean sensitivity, specificity, and accuracy 

of the proposed method on the artificial finger image database 

with the approach of multiscale model fitting on a single 

direction without post-processing while table 4 shows the 

same rates for the same approach with post-processing.   

Fig. 8 shows the first image of the artificial finger database 

and the corresponding vein network obtained by the 
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application of the proposed method and the approach of 

multiscale model fitting on a single direction without post-

processing. Fig. 9 shows the first image of the artificial finger 

database and the corresponding vein network obtained by the 

application of the proposed method and the approach of 

multiscale model fitting on a single direction with post-

processing.  

Table 1. Mean sensitivity, specificity, and accuracy of the 

proposed method (first approach) without post-processing. 

 
Sensitivi

ty 
Specificity Accuracy 

Mean 0.945 0.929 0.933 

Standard 

Deviation 
0.117 0.033 0.049 

Table 2. Mean sensitivity, specificity, and accuracy of the 

proposed method (first approach) with post-processing. 

 
Sensitivi

ty 
Specificity Accuracy 

Mean 0.926 0.963 0.956 

Standard 

Deviation 
0.115 0.027 0.045 

 

Fig. 6. The first image of the artificial finger image database 

and the corresponding finger vein pattern obtained by the 

application of the proposed method (first approach) without 

post-processing. 

 
Fig. 7. The first image of the artificial finger image database 

and the corresponding finger vein pattern obtained by the 

application of the proposed method (first approach) with post-

processing. 

Table 3. Mean sensitivity, specificity, and accuracy of the 

proposed method (second approach) without post-processing. 

 
Sensitivit

y 
Specificity Accuracy 

Mean 0.876 0.853 0.858 

Standard 

Deviation 
0.092 0.031 0.043 

Table 4. Mean sensitivity, specificity, and accuracy of the 

proposed method (second approach) with post-processing. 

 Sensitivit

y 
Specificity Accuracy 

Mean 0.841 0.919 0.901 

Standard 

Deviation 

0.090 0.041 0.046 

 

Fig. 8. The first image of the artificial finger image database 

and the corresponding finger vein pattern obtained by the 

application of the proposed method (second approach) 

without post-processing. 

 

Fig. 9. The first image of the artificial finger image database 

and the corresponding finger vein pattern obtained by the 

application of the proposed method (second approach) with 

post-processing. 

From the results shown on tables 1-4 and in the figures 6-9 

arises that the proposed method is robust. Moreover, the first 

approach achieves higher evaluation rates than the second. 

4. Conclusions 
In this paper, a novel method for finger vein segmentation in 

infrared images based on a model that represents the intensity 

distribution along a cross-sectional profile of vein, is 

proposed. The method is based on model fitting of brightness 

intensities over a local neighborhood. A simple second-order 

degree polynomial is used in order to represent the brightness 

intensities across the cross-sectional profile of veins. Two 

different approaches are adopted. According to the first, a 

multiscale multidirectional model fitting is performed based 

on the assumption that on a vein pixel the second-order 

derivative is positive. The second is based on multiscale 

model fitting of intensities in a single direction using two 

assumptions about the intensities of the profile of veins. 

According to the first, the second order derivative is positive 

on a vein pixel, and to the second, the first order derivative is 

zero on a vein pixel which means that the pixel belongs to 

vein centerlines. The proposed method is robust, in both 

approaches, as the experimental results show and it achieves 

high evaluation rates in terms of sensitivity, specificity, and 

accuracy. In addition, it can be applied in various image 

processing problems which require segmentation of tubular 

structures in digital images such as segmentation of vessels in 

retinal images, leaf vein extraction, and road extraction from 

satellite images.     
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