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Abstract:  

Binomial regression model is a very important type of generalized linear model (GLM) and has been 

applied in wide area such as Liver cancer data. In diagnosing the model, we need to check for the 

heteroscedasticity problem because it happens when the standard errors of a variable are non-constant. 

heteroscedasticity will impact the validity and abuse the assumptions of binomial regression. Commonly, 

conditional expectations and residuals (CERES) and partial residual (PR) plots have been implemented for 

the identification of heteroscedasticity in the data set. In this paper, we present the comparison analysis 

between CERES and PR plots by using two different kind of data which are liver cancer data and simulated 

data. In simulation, we have selected four different sample sizes which are 25, 50, 100, and 200, and 

variance of error term  = 0.00, 0.15, 0.38, 0.75. After that, a 10,000 simulated data is conducted using the 

R software. The results show the PR plots can detect heteroscedasticity better than CERES plots as due to 

the larger disperity and the PR plots gives better visual diagnostic for heteroscedasticity as compare to 

CERES plots. As a summary, this research found that PR plots is the appropriate solution for checking the 

heteroscedasticity.  

Keywords: CERES plots, Partial residual plots, Heteroscedasticity 

1. Introduction 

Statistical methods have wide range of application in liver 

cancer research investigation (Lukman et al. 2019) and (Liu et 

al. 2019). The identification of relationships among a set of 

elements is the major concern of binomial regression analysis. 

Regression diagnostics is the basic requirement to apply 

regression analysis to reach reliable conclusions. It is 

necessary to apply regression diagnostics to avail of reliable 

conclusions. In scientific investigations, it is appealing to 

develop such methods that have wide applicability with 

computational ease.  

 

The statistical graphics are most important for the streams 

analyze data. In our daily life visual representation of data sets 

through graphs, play an important role in all activities. Before 

applying regression analysis in liver cancer data and other 

applied sciences, the violation of assumptions should be 

addressed Homoscedasticity and heteroscedasticity are some 

of the important assumptions in regression modeling 

(Montgomery et al. 2021). The generalized linear model 

(GLM) (Gill, 2000) is an extended forms of the linear 

regression model with the response variable follows some 

exponential family of distributions expects normal. The three 

popular components for the GLM are random, systematic, and 

link function. Nelder and Wedderburn (1972) proposed the 

idea of class of GLM and establish many models. We start 

study models are GLM with the binomial regression. The 

iterative weight leas square method (IWLS) is an estimation 

method is used to estimate of parameter. In this paper, we 

would like to consider a binomial response which has wide 

applications in modeling Liver cancer and many other types 

of data. The estimation of GLM parameters and their 

optimality heavily depend on some standard assumptions. 

Diagnostics are designed to find problems with the 

assumptions of any statistical procedure.  

1.2   Review on CERES and Partial residual plots  

Partial residual (PR) plots, first introduced by Ezekiel (1924), 

represent a graphical construction for observing the direction 

and extent of the linearity of a regressor variable. It has a long 

history for its prominence. Larsen and McCleary (1972) 

should get credit for the name PR  plots. Wood (1973) 

referred to them as compared plus residual plots. Mallows 

(1986) extended these first-order plots to higher orders, the 

so-called augmented partial residual plots. Mansfield and 

Conerly (1987) consider the expectation properties of based 
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PR plots by obtaining algebraic representations of using the 

true model distributional properties. Cook (1993) obtained 

further theoretical underpinnings of these plots and proposed 

and extended class, the CERES plots. CERES is an 

abbreviated acronym for ‘combing conditional expectations 

and residuals. PR plots also called component plus residual 

plots. The properties of PR plots were systematically explored 

by Cook (1993) and Cook and Croos-Dabrera (1998). Berk 

and Booth (1995) compare PR plots with several other 

diagnostic plots. Fowlkes (1987) suggested an adaption of PR 

plots for logistic regression. Landwehr (1983) suggested and 

application of PR plots for logistic regression. Our general 

goal, which we make more specific a bit later, is to investigate 

conditions under which CERES and PR plots can provide 

useful information in class of GLM. Fowlkes (1987) and 

Landwehret al. (1984) argued that PRplots may be useful for 

assessing nonlinearity in binary logistic regression. Landwehr 

and Pregibon (1993) study these plots for GLMs under 

canonical links. Kahng and Lee (2004) discussed the 

usefulness of CERES plots in GLMs.Parkand Hastie (2007) 

discussed the technique of algorithm for regularized the 

GLMs. Imran and Akbar (2020) discussed the construction of 

partial residuals using response residuals for the inverse 

Gaussian regression model is carried out to explore structure 

and usefulness for visualizing diagnostics the outliers, 

multicollinearity, and heteroscedasticity and curvature as a 

function of selected predictors. The practical implementation 

of these plots can be seen in many fields Wouters et al. 

(2018). 

In this study, CERES and PR plots are constructed for 

binomial regression model (BRM). These plots provide 

suitable diagnostics for model specification. Applied scientists 

usually require simple, powerful, and wide applicable 

techniques with computational ease. It is cumbersome to 

practitioners to learn and apply computationally intensive 

statistical methods. This study explore such an idea while 

offering the importance of CERES and PR plots in regression 

diagnostics without applying the conventional tests. To assess 

the diagnostic value of CERES and partial residual plots in 

binomial regression addressing violation of assumptions via 

real and simulated data. Use CERES and partial residual plots 

for the detection of heteroscedasticity. We also made the 

comparison of CERES and PR plots simultaneously which 

plots performed well. Finally, we will compare CERES and 

PR plots, and also identify which plot performs better in the 

detection of heteroscedasticity. 

2. Material and Methods 
In this section, we described CERES and PRplots in detecting 

outliers in binomial regression. Let us consider the model  

   ( )              (1) 

WhereY= (            )  is an     vector of response; X = 

(            ) is a     covariate matrix, and   is     

random vector. The conditional distribution of Yon X for a 

GLM for a set of n observations due to McCullagh and Nelder 

(1983)is, 

    (     ) = exp{
   –  ( ) 

 ( )
   (   )}, (2) 

where  ( )  ( )   w(.,.) are well-known smooth functions;  is 

an unknown scalar-valued parameter that is dependent on X, 

and is  an unknown dispersion parameter. 

 (   )=
  

  
  ( ) and  (   )= {

   

   
}   ( ). 

There is no consideration of the dispersion parameter ; when 

calculating  ( ), as a result,  ( ) is presumed to be 

established. This function's log-likelihood function  is, 

 ( )     ( ) = exp{
   –  ( ) 

 ( )
   (   )}. 

The predictors are portioned as    (  
     

 ), where    is 

     , j = 1, 2.The regression function can be modelled as 

follows, according to Cook and Croos-Debrera(1998).

  ( )   ( ( ))        
     (  ) (3) 

Assume that the regression function has a parametric form 

and that it is given by    ( )   ( ( ))         
    

   
   , 

In (3), the term  ( ( ))refers to a relation function centered 

on a monotonic and differentiable probability distribution and 

(      
     

 )  is consisting of a vector of unknown 

parameters (    )   vector. The regression function, 

 ( )=    ( ( )), is a function of   or function of  

 depending on interest and concerns. 

The binomial response variable's probability density function 

is given by 

 (      )    (
 
 )   (   )   y = 0,1,2, … ,n. 

It can be written as y ~ binomial (      ). The mean and 

variance of y are,  ( )     and     ( )    (    ) 

respectively. In logistic regression, which serves as a running 

example in this article, we begin with a binomial (   ) 

random variable Y*|X, where the unknown probability of 

"success"  , may depend on  . The known index   may vary 

from observation to observation but is assumed to be 

independent of  .  

The observed fraction of successes from a standard binomial 

trial is then Y = Y*/n. In terms of (2) and (3), 

      h( ) = log(
 

   
 ) (4) 

 ( ) = log (1 + exp ( )), and v( ) = 1/n.Cook (1993) looked 

at how well PR plots could depict   in the special case of 

additive-error models where the relation is the identity 

function,   =    and the conditional distribution of Y|X can be 

defined as 

Y|X =    +   
      (  ) + ɛ,   (5) 

where is unaffected by   and has a mean of 0. Cook's research 

revealed that the output of PR plots is highly influenced by 

the conditional expectation E(     ), with the best results 

obtained when the E(     ), is linear in the value of   . 

Consider summarizing the data by fitting  

  (x|b) =  (  ) =     +   
   +    

 
ɩ(     (6) 

where   = (  ,   
 
,    

 
)  and ɩ (  ) is a user-defined    

function. The equipped model is indicated by the subscript   

on     and   Later, we'll talk about your options for Based on 
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(6), it is assumed that Estimated coefficients ̂ , j= 0, 1, 2, are 

obtained by minimizing a convex objective function. 

 ̂  = ( ̂ , ̂ 
 ¸ ̂ 

 ) = arg
   

 
LN (b),     (7) 

LN (b) = 
 

 
∑  (  (    )   )

 
      = 

 

 
∑  (       

      
   

    
  (   )   ) 

L(. , .) is a convex objective function with respect to its first 

argument that is chosen by the consumer. Since it contains 

ordinary least squares, maximum probability, and some robust 

estimates, this class is not very restrictive. For logistic 

regression with the relation provided in (4), for example, the 

objective function corresponding to maximum likelihood is 

L(  (   )   ) = n{log(1 + exp(  )) – y  }.  (8)  

When we talk about maximum probability, we're talking 

about the related figures from (2) and (3). (6).  

 

The class of convex objective functions is a generalization of 

the class of objective functions corresponding to (7). 

L(  ,y) =L(y –   ) 

used by Cook (1993) for additive-error models (5). A PR plot 

for    is obtained by first setting ɩ(  ) =    and fitting (6) via 

(7), then constructing the (   + 1)-dimensional plot {  ̂     }, 

where 

  ̂ =(y – ̂ )   ( ̂ ) +  ̂ 
            (9) 

is the partial residual for   ,   (.) is the first derivative of  h(.) 

with respect to u,  ̂obtained from (7), and  ̂ (x) = 

   (  (   ̂)) is the regression function    evaluated at  ̂. 

The subscript "2" in   ̂  is intended to remind that the partial 

residuals are for   .  

Next, to form a CERES plot for   let us set ɩ(  ) equal to a 

function E(     ) that captures the behavior of  ̃(     ). 

This function may be E(     ) if known, an estimate 

E(     ) based on smoothing, or a parameterized class of 

functions that includes E(X|   ) as a special case.Onceɩ(  ) 

= ̃(     )  is specified, we fit (6) again using (7). The 

CERES plot for    is then the (  + 1)-dimensional plot {  ̂ , 

  }, where 

  ̂  (y – ̂ )   ( ̂ ) +  ̂ 
  ̃(     )     (10)  

is the CERES residual for    constructed from the quantities 

defined in (8) but based on ɩ(  ) = ̃(     ). A CERES plot 

reduces to a PR plot when  ̂ 
  ̃(     ) is a linear function of 

  . Cook (1993) provided an extra discussion on the 

construction of ̃(     ). 

Partial residuals as defined in (9) reduce to the usual 

definition of partial residuals in additive-error models (5) 

because then the link is the identity function and    . For 

logistic regression (4), 

(y – ̂ )   ( ̂ ) = 
     ̂ 

 ̂ (   ̂ )
 

and the partial residuals (9) reduce to those defined by 

Landwehret al. (1984) when the response is binary. Recall 

that in our formulation, y = y *| n. Generally, the first term on 

the right of (9) can be interpreted in terms of η as the score 

scaled by the expected information per observation, all 

evaluated at ̂ , that(    )   ( )    
              

  {              }
 

Because    (              
)      

And   {              }   (              
)

 
 

(  –   )   ( ) can also be interpreted as the standardized score 

weighted by the inverse of its standard deviation. If we 

let ̂ (X) =   ̂  (X| ̂), the quantity  ̂   (y–  ̂ )   ( ̂ )The 

adjusted dependent variable, which is used in iterative 

estimation techniques such as the Newton-Raphson process, is 

often referred to as the adjusted dependent variable 

(McCullagh and Nelder, 1983). Expression (8) coincides with 

all partial residual definitions that we are aware of, including 

those of Collett (1991) and McCullagh and Nelder (1983). 

However, maximum likelihood estimation is not needed, and 

‘g' may be a function of multiple predictors, necessitating the 

use of three-dimensional plots when   = 2. Fitting a 

regression curve to the PR plot {  ̂    }  should yield a 

useful approximation of ‘g' up to a linear transformation if the 

correlation between g(  ) and the regression function 

E(  ̂     ) is sufficiently high. Because obtaining a closed-

form for E(  ̂     )is difficult. 

We use approximation to study the relationship between 

E(  ̂     ) and g(  ) and we are going to use g(  ) = b  . 

Consequently, the CERES and PR plots for BRM can be 

constructed by using equation (9) and (10). 

The first derivative of the binomial regression link function 

given in equation (4) is 

   ( ̂ ) = 
 

 (   )
 

Hence the fitted model by using log link for binomial 

regression can be expressed as 

 ̂  
  ̂    ̂ 

       ̂ 
   

     ̂    ̂ 
       ̂ 

   
 

Where the regression estimators are  ̂ ,  ̂ 
 ,  ̂ 

  the fitted 

model is  ̂  and the predictors are   . Similarly, the CERES 

and partial residual for a model with p explanatory variables 

can be expressed as 

  ̂ =(y – ̂ )   ( ̂ ) +  ̂ 
               (11) 

  ̂  (y – ̂ )   ( ̂ ) +  ̂ 
  ̃(     )                 (12)  

In addition, for  explanatory variables, the fitted model is 

 ̂  
  ̂    ̂ 

       ̂ 
       ̂ 

   

     ̂    ̂ 
       ̂ 

      ̂ 
   

  (13)        

In the next section, the real data is used to elaborate the 

theoretical part of CERES and PR plots using liver cancer 

data. 

3. Example Liver Cancer data 
Areal data (see appendix )would be used to assess the 

performance of CERES and PRplots in the detection of 

heteroscedasticity. The methodology developed in the 

previous section is implemented on the Liver cancer data that 

was utilized by Zelterman (1999)and also later by Atkinson 

and Riani (2001). The response variable (Y) that follows a 

binomial distribution with two explanatory variables which 

are, dose of a patient (  ), and months of study(  )that 

contains 72 observations.In order to detect heteroscedasticity, 

the CERES and PR plots for the Liver cancer data are shown 
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in Figures 1 and 2, respectively. Since, we have two 

predictors in the modeltherefore there are two possible 

CERES and PR plots that would be obtained.  

The summary of binomial regression model for Liver cancer 

data is presented in Table 1. Based on the result, it shows that 

both of independents variables are significant ( -value < 

0.05).  

Table1. Binomial Regression Analysis for Liver Cancer Data 

Predictors Coefficients Standard 

error 

t-test  -

value 

Constant 0.411 0.124 3.32 0.001 

   0.1972 0.0905 2.18 0.033 

   0.01788 0.00588 3.04 0.003 

         ,    (   )         

 ̂                                 

To check the heteroscedasticity in Liver cancer data, we 

applied Levene’s test. It is also observed that the test also has 

a significant  -value which raised the problem of 

heteroscedasticity in the dataset (Table 2). 

Table 2.Regression diagnostic test 

Test Statistic Statistic   value 

Levene’s test 52.072 0.0000 

(a). CERES Plot (   = Dose of a patient) for Heteroscedasticity         (b). CERES Plot (                   ) for 

Heteroscedasticity 

Figure 1:  CERES plots for binomial regression model for Liver Cancer Data 

 

(c). PR Plot (   = Dose of a patient) for Heteroscedasticity                   (d). PRPlot (                   ) for Heteroscedasticity 

Figure 2: Partial residual plots for binomial regression model 

for Liver Cancer Data 

Using the real dataset, Figure 1 (a) and (b) are CERES plots 

of    = Dose of a patient and                   , 

respectively. While and Figure 2 (c) and (d) are PR plots of 

   = Dose of a patient and                   , 

respectively. All the figures were made that clearly detect the 

heteroscedasticity issue. Because various observations are far 

from the trend line. However, PR plots detect 

heteroscedasticity more better as compared to CERES plots as 

due to the larger disparity. Based on the effectiveness of these 

plots, we can propose that both of these plots can be used as 

another alternative method to detect heteroscedasticity in 

addition to the formal statistical tests. In the next section, we 

also tried to detect heteroscedasticity by using a simulated 

dataset. 
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4. Simulation Study 
In this study, we follow the Monte Carlo simulation for 

heteroscedasticity used by Cribari-Neto (2004). Aslam et al. 

(2013) also have followed that scheme. The numerical scheme 

and the relevant model for this simulation is given as. 

     √(    )       (   )      i= 1,2, … ,n.j = 1, 2, ... ,p 

Where    is generated by the standard normal distribution i.e  

     (   ) and   is the level of multicollinearity set as 0.8, 

0.9, 0.95, and 0.99 in the above simulation equation.  

 ̂  
  ̂    ̂ 

       ̂ 
   

     ̂    ̂ 
       ̂ 

   
 

The response variable is generated randomly as y ~ B(1, ̂ ). 

The regression coefficients are considered to be fixed as 

          . 

The distribution of error term,           is normal with zero 

mean and standard deviation   . Moreover, it is assumed the 

  ’s to be observed independent. The variance of error termis 

generated as; 

  
  = 

    *           
  + 

where the values of  vary as follow; = 0.00, 0.15, 0.38, 

0.75.The measure in extent to the degree of heteroscedasticity 

is determined by, 

       

     (  
 )     (  

 )⁄  

λ = 1 for the case of homoscedasticity, λ > 1 for 

heteroscedasticity. 

We have selected four different sample sizes, i.e., n are 

selected as 25, 50, 100, and 200. Each of the result is based on 

10,000 simulations. The performance of the CERES and PR 

plots and diagnostics are assessed. The simulation is 

conducted using the R software. The graphical displays of the 

CERES and the PR plots are presented in Figures 3 to 10. 

 

  (a).CERES Plot (  ) for Heteroscedasticity      ,  =1(b).CERES Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c).CERES Plot (  ) for Heteroscedasticity      ,  =4.04(d).CERES Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e).CERES Plot (  ) for Heteroscedasticity      ,  =35.26(f).CERES Plot (  ) for Heteroscedasticity      ,  =35.26 



 
 

*Corresponding Author: Nasir Saleem  Page 48 

 

  (g).CERES Plot (  ) for Heteroscedasticity      ,  =96.55(h).CERES Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 3: CERES plots for binomial regression model for simulated data, when n=25 

 

  (a).CERES Plot (  ) for Heteroscedasticity      ,  =1(b).CERES Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c).CERES Plot (  ) for Heteroscedasticity      ,  =4.04(d).CERES Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e).CERES Plot (  ) for Heteroscedasticity      ,  =35.26(f).CERES Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g).CERES Plot (  ) for Heteroscedasticity      ,  =96.55(h).CERES Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 4: CERES plots for binomial regression model for simulated data, when n=50 

 

  (a).CERES Plot (  ) for Heteroscedasticity      ,  =1(b).CERES Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c).CERES Plot (  ) for Heteroscedasticity      ,  =4.04(d).CERES Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e).CERES Plot (  ) for Heteroscedasticity      ,  =35.26(f).CERES Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g).CERES Plot (  ) for Heteroscedasticity      ,  =96.55(h).CERES Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 5: CERES plots for binomial regression model for simulated data, when n=100 

 

  (a).CERES Plot (  ) for Heteroscedasticity      ,  =1(b).CERES Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c).CERES Plot (  ) for Heteroscedasticity      ,  =4.04(d).CERES Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e).CERES Plot (  ) for Heteroscedasticity      ,  =35.26(f).CERES Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g).CERES Plot (  ) for Heteroscedasticity      ,  =96.55(h).CERES Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 6: CERES plots for binomial regression model for simulated data, when n=200 

 

  (a).PR Plot (  ) for Heteroscedasticity      ,  =1(b). PR Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c). PR Plot (  ) for Heteroscedasticity      ,  =4.04(d). PR Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e). PR Plot (  ) for Heteroscedasticity      ,  =35.26(f). PR Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g). PR Plot (  ) for Heteroscedasticity      ,  =96.55(h). PR Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 7: Partial residual plots for binomial regression model for simulated data, when n=25 

 

  (a).PR Plot (  ) for Heteroscedasticity      ,  =1(b). PR Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c). PR Plot (  ) for Heteroscedasticity      ,  =4.04(d). PR Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e). PR Plot (  ) for Heteroscedasticity      ,  =35.26(f). PR Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g). PR Plot (  ) for Heteroscedasticity      ,  =96.55(h). PR Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 8: Partial residual plots for binomial regression model for simulated data, when n=50 

 

  (a).PR Plot (  ) for Heteroscedasticity      ,  =1(b). PR Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c). PR Plot (  ) for Heteroscedasticity      ,  =4.04(d). PR Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e). PR Plot (  ) for Heteroscedasticity      ,  =35.26(f). PR Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g). PR Plot (  ) for Heteroscedasticity      ,  =96.55(h). PR Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 9: Partial residual plots for binomial regression model for simulated data, when n=100 

 

  (a).PR Plot (  ) for Heteroscedasticity      ,  =1(b). PR Plot (  ) for Heteroscedasticity      ,  =1 

 

  (c). PR Plot (  ) for Heteroscedasticity      ,  =4.04(d). PR Plot (  ) for Heteroscedasticity      ,  =4.04 

 

  (e). PR Plot (  ) for Heteroscedasticity      ,  =35.26(f). PR Plot (  ) for Heteroscedasticity      ,  =35.26 
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  (g). PR Plot (  ) for Heteroscedasticity      ,  =96.55(h). PR Plot (  ) for Heteroscedasticity      ,  =96.55 

Figure 10: Partial residual plots for binomial regression model for simulated data, when n=200 

By using the simulated data set, heteroscedasticity was clearly 

detected in Figures 3 to 6 present the CERES plots while 

Figures 7 to 10 present the PR plots. Firstly, we used here, 

sample size of n=25,50,100,200observations in simulated 

data. The CERES and PRplots for heteroscedasticity when 

sample size n = 25,       , 0.15, 0.38, 0.75 and   = 1, 4.04, 

35.26, 96.55 if   = 1 it is a case of homoscedasticity and if   > 

1 it is a case of heteroscedasticity. Similarly, we each sample 

size n = 50, 100, 200 for the heteroscedasticity. It is observed 

that CERESand PRplots detect heteroscedasticity for 

regressor (x1, x2). Because various observations are far from 

the trend line. However, in overall PR plots detect 

heteroscedasticity more better as compared to CERES plots as 

due the larger disperity. In other words, both plots showed 

more observations are far away to each other’s that is 

dispersed between the points. The heteroscedasticity in the 

PRplot shows more dispersed between the points as compare 

to the CERES plot. The PRplots gives better visual diagnostic 

for heteroscedasticity as compare to CERES plots. 

5. Conclusions 
This article addresses the development and implementation of 

CERES and PR plots for the identification of 

heteroscedasticity in a binomial regression model. At first, we 

develop a methodology and then apply it to real-life and 

simulated data. Both real and simulated data reveal that the 

proposed method can successfully detect the 

heteroscedasticity problem in BRM. Both CERESand PR 

plots perform well in doing this job. But the PR plot performs 

well better than the CERES plot in the detection of 

heteroscedasticity. 

Appendix 
A1: Liver cancer data 

Observations Total 

number 

tasted 

Number 

with 

Cancer 

Dose 

of a 

patient 

Months 

on 

Study 

1 199 0 0.00 9 

2 147 1 0.30 9 

3 76 1 0.35 9 

4 52 0 0.45 9 

5 345 0 0.60 9 

6 186 0 0.75 9 

7 168 1 1.00 9 

8 169 1 1.50 9 

9 164 0 0.00 12 

10 151 1 0.30 12 

11 27 1 0.35 12 

12 14 1 0.45 12 

13 283 1 0.60 12 

14 153 0 0.75 12 

15 149 1 1.00 12 

16 152 1 1.50 12 

17 133 1 0.00 14 

18 42 1 0.30 14 

19 25 0 0.35 14 

20 14 1 0.45 14 

21 243 1 0.60 14 

22 124 0 0.75 14 

23 127 1 1.00 14 

24 127 1 1.50 14 

25 115 0 0.00 15 

26 75 1 0.30 15 

27 35 1 0.35 15 

28 20 0 0.45 15 

29 203 1 0.60 15 

30 109 1 0.75 15 

31 99 1 1.00 15 

32 100 1 1.50 15 

33 205 1 0.00 16 

34 66 1 0.30 16 

35 61 1 0.35 16 

36 304 1 0.45 16 

37 287 1 0.60 16 

38 193 1 0.75 16 

39 100 1 1.00 16 

40 110 1 1.50 16 
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41 153 0 0.00 17 

42 69 1 0.30 17 

43 443 1 0.35 17 

44 302 1 0.45 17 

45 230 1 0.60 17 

46 166 1 0.75 17 

47 85 1 1.00 17 

48 82 1 1.50 17 

49 555 1 0.00 18 

50 2014 1 0.30 18 

51 1102 1 0.35 18 

52 550 1 0.45 18 

53 411 1 0.60 18 

54 382 1 0.75 18 

55 213 1 1.00 18 

56 211 1 1.50 18 

57 762 1 0.00 24 

58 2109 1 0.30 24 

59 1361 1 0.35 24 

60 888 1 0.45 24 

61 758 1 0.60 24 

62 587 1 0.75 24 

63 297 1 1.00 24 

64 314 1 1.50 24 

65 100 1 0.00 33 

66 445 1 0.30 33 

67 100 1 0.35 33 

68 103 1 0.45 33 

69 67 1 0.60 33 

70 75 1 0.75 33 

71 31 1 1.00 33 

72 11 1 1.50 33 

Source: Atkinson, A. C., &Riani, M. (2001). Regression 

diagnostics for binomial data from the forward search.Journal 

of the Royal Statistical Society: Series D (The Statistician), 

50(1), 63-78. 
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